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Abstract Dynamic pricing is a pricing strategy where a firm adjust the price for their
products and services as a function of its perceived demand at different times. In this
paper, we show how Evolutionary algorithms (EA) can be used to analyse the effect
of demand uncertainty in dynamic pricing. The experiments are conducted in a range
of dynamic pricing problems considering a number of different stochastic scenarios
with a number of different EAs. The results are analysed, which suggest that higher
demand fluctuation may not have adverse effect to the profit incomparison to the
lower demand fluctuation, and that the reliability of EA for finding accurate policy
could be higher when there is higher fluctuation then when there is lower fluctuation.

1 Introduction

Pricing is one of the most important decisions that a firm needs to make in order to
survive in a competitive marketplace. If done carefully, itcan be a valuable tool for
the firm to achieve a number of different business goals, suchas profit maximisation,
demand management, value creation, etc. Conversely, a poorpricing policy could
lead to a loss, and consequently extinction of the firm. Dynamic pricing [27] [15][3]
is a pricing strategy where a firm adjust the price for their products and services
as a function of its perceived demand at different times. Traditionally, it has been
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applied in service industries, such as airlines, hotels andrentals [16]. For example,
in airlines, the price for a seat changes according to the time remaining prior to the
flight and number of available seats. Recent developments ininformation technol-
ogy and eCommerce have led the dynamic pricing to spread overa wide range of
other industries such as retail [11][6][1], wholesale [23]and auctions [24].

In this paper we show how the evolutionary models can be used for dynamic pric-
ing in a stochastic setting where the demand is uncertain. Our motivation is to use
such pricing approach to control demand and manage resources in a service indus-
try [28][18]. In the type of problems we are analyzing, resource management is the
effective workforce utilization for a given calendarised work demand profile, while
meeting a set of constraints such as quality of service targets, conflict resolution
schemes, such as overtime and borrowing additional workforce [17]. The system
described in [18] integrates various Artificial Intelligence and Operational Research
techniques in order to forecast demand for specific productsand services at regional
level, and to optimize the allocation of resources to each one of the region. Our aim
is to use evolutionary algorithms as an alternative technique to manage resources
by means of effective pricing. In particular, we extend the model presented in [26]
and implement several evolutionary algorithms (EA) [7] forsolving them. We anal-
yse the performance of these algorithms in finding optimal profit, and also analyse
the effect of demand uncertainty have on total profit and on the reliability of these
algorithms.

EAs have been successfully applied in wide range of search and optimization
problems. They are inspired by Darwin’s theory of evolutionwhereselectionand
variation work together to evolve a better solution. Different EA has been pro-
posed using different approaches to selection and variation. In this paper we in-
vestigate two EAs to solve dynamic pricing problems, namelythe genetic algorithm
(GA) [7][12] and the estimation of distribution algorithms(EDA) [10],[14]. GA and
EDA differ in the way they implement the variation operator.In particular, GA uses
crossoverandmutationapproach to variation. In contrast, EDA uses probabilistic
approach to variation, where a probabilistic model is builtand sampled to gener-
ate new solutions. EDA is a relatively new area in evolutionary computation field
and are being increasingly applied to real-world optimization problems. They are
often reported to perform better than the traditional GAs [8] [22]. It is, therefore,
interesting to see the performance of both EDA and GA with regards to dynamic
pricing.

The objectives of this paper are to: a) analyze the performance of evolutionary al-
gorithms as tools to approximate optimal behaviour in dynamic pricing; b) compare
the algorithms under different scenarios with different levels of demand uncertainty;
and c) analyse the effect of demand uncertainty have on the profit.

The paper is structured as follows. Section 2 presents the mathematical model
of uncertainty for dynamic pricing. Section 3 describes a way to representing the
dynamic pricing problem for solving them using EA, and also gives an overview of
the implemented EAs. Section 4 describes the experimental results and presents the
analysis of the results. Finally, section 5 concludes the paper.
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2 A Mathematical Model of Dynamic Pricing

Depending on the nature of the product (or service), and the expected demand be-
haviour, a company has to choose between short-term or long-term profits. Short-
term profit is to take advantage of the dynamics of demand throughout a week, or
even during a day. Long-term profit is to model the long-term implications of short-
term pricing and investment policies with the goal of maximising the long-term, for
example months or years, profit. This section describes a dynamic pricing model
that can be used for analyzing both short-term and long-termprofits.

The total profit, (Π ), earned from a product during the planning horizon can be
modelled as

Π =
N

∑
t=1

(PtQt −CtQt) (1)

Here,N is the number of periods in planning horizon,Qt is the total sales (or the
production) of the product (which is equal to, or less than, the demand for the prod-
uct),Pt is the average price of the product, andCt is the cost of producing one extra
product in periodt, PtQt is the total revenue at periodt, andCtQt is the variable cost
at periodt. In the situations where the demand is uncertain, the sales can be given
by the sum of expected salesE(Qt) and a stochastic term modelling the fluctuation
in demand as

Qt = E(Qt)+ εt (2)

Here,εt represents the fluctuation in demand. We give it as a normal random vari-
able, upper and lower bounded by the positive and negative expected sales respec-
tively. This can be written as

εt =

{

max{−E(Qt),N(0,σE(Qt))} if N(0,σE(Qt)) < 0
min{E(Qt),N(0,σE(Qt ))} if N(0,σE(Qt)) > 0

(3)

where,σ ≥ 0 is the fraction ofE(Qt) representing the strength of the fluctuation.
Higherσ represents high fluctuation in demand and lowerσ represents lower fluc-
tuation in demand. From (1) and (2), the total profit can be written as

Π =
N

∑
t=1

(E(Qt)+ εt) (Pt −Ct) (4)

Therefore, the expected profit can be written as

E(Π) =
N

∑
t=1

E(Qt)(Pt −Ct) (5)

Also, the expected salesE(Qt) in a periodt depends on the price for the product in
that period and the price for the product in other periods in the planning horizon.
For example, in airlines (or hotels), sales for seats (or rooms) in a given day depend
on their price on that day and on other days within the planning horizon, which are



Siddhartha Shakya, Fernando Oliveira, and Gilbert Owusu

visible to customers. We represent this price-demand relationship linearly1 as

E(Qt) = b0t +b1tP1+b2tP2 + ...+bttPt + ...+bNtPN (6)

where,b0t is the intercept of the linear model representing the customer base (total
customers willing to buy the product in periodt), andb jt are the parameters known
as slopes which represent the impact of price at timej have on the demand at timet.
Note that, in general, the parameterbtt is negative, since higher price for the product
in a period is likely to decrease the demand for that product in that period.

Inversely, the price for the productPt in a period can be written in terms of the
expected sales for the product in that period and the expected sales in other periods
in the planning horizon as

Pt = a0t +a1tE(Q1)+a2tE(Q2)+ ...+attE(Qt)+ ...+aNtE(QN) (7)

where,a0t is the intercept anda jt are the parameters representing the impact of
sales at timej have on the price at timet. Note that, in general, the parameteratt

is negative, since higher sales for the product in a period islikely to be due to the
lower price for that product in that period.

From (4) and (7) we get the general model for the total profit with stochastic
demand as

Π =
N

∑
t=1

(E(Qt)+ εt)

(

a0t +
N

∑
j=1

a jt E(Q j)−Ct

)

(8)

The model of stochastic dynamic pricing presented here is different than the model
presented in [26]. Here, rather than applying the single stochastic term to total profit,
we apply stochastic term to each individual periods in orderto accurately model
individual demand fluctuations in different selling periods.

Now let us define some additional constraints a firm needs to impose when defin-
ing its policy for pricing a given product.

a. Capacity constraints - These are the number of products available in a given
period, and have the lower and upper bounds, represented forall t = 1..N as

Mt ≤ Qt −Lower bound for the capacity constraint

Kt ≥ Qt −Upper bound for the capacity constraint (9)

b. Price caps - These are the selling price of a product in a given period, and also
have lower and upper bounds, represented for allt = 1..N as

Pt ≤ Pt −Lower bound for the price cap

Pt ≥ Pt −Upper bound for the price cap (10)

1 Linear models are widely used for representing the price anddemand relationship, both in re-
search and in practice. There are, however, other models, such asexponentialand multinomial
logit [27][23], that could be similarly used to represent this relationship. Testing these models is
out of the scope of this paper and could be the part of the future work.
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Given the parametersa jt , the upper bound and lower bound to both the capacity
constraint and the price cap, and also theσ for ε representing the fluctuation in
demand, our goal is to find a policyE(Qt) (from which, using 7, we get thePt ) for
all t = {1..N} that maximize the total profit, i.e. maximizeΠ in the equation (8).
Since equation (8) is nonlinear and requires to satisfy constraints defined in (9) and
(10), this problem is a nonlinear constrained optimizationproblem.

3 Optimising Stochastic DP models using EAs

A general constrained optimization problem can be defined asmaxx f (x), x ∈ S⊂
R

n subject to the linear or nonlinear constraintsgi(x) ≤ 0, i = 1, ...,m . Herem
is the total number of constraints. One of the most popular ways to solving con-
strained optimization problems with EAs is by using apenalty function. The idea is
to construct a function that penalizes the original objective function for violating the
constraints in the model. In order to avoid the penalty, the algorithm tries to focus
its search on the feasible part of the search space. Here we use one such technique
adopted from [19] and also implemented by [26], and define thepenalty function as

F(x) = f (x)−h(k)H(x), x∈ S⊂ R
n (11)

where, f (x) is the original objective function (in our case it is defined by Π in
equation (8)).h(k)H(x) is the penalising part of the function, whereH(x) is the main
penalty factor (equals to 0 when no constraints are violated) andh(k) is known as the
dynamically modified penalty value that intensifies the level of penalty according to
the algorithm’s current iterationk. Due to the limited space, we do not describe these
factors in detail, interested readers are referred to [19] [26].

Solution representation for EA: A solution,x, is represented as a setE(Q) =
{E(Q1),E(Q2), ...,E(QN)}, where eachE(Qt) is represented by a bit-string of
length l . The total length of a bit-string solution,x = {x1,x2, ...,xn} , wherexi ∈
{0,1} , is therefore, equal ton= l ×N . The goal of an algorithm is to maximize the
modified objective function defined in (11).

Overview of the used EAs:We adopt the approach presented in [26] and imple-
ment two EDAs and a GA for solving this problem. They include Population Based
Incremental Learning (PBIL) algorithm [2]), DistributionEstimation using Markov
Random Field with direct sampling (DEUMd) algorithm [25] and a GA [7]. We also
find it interesting to use a non-population based algorithm known as Simulated An-
nealing (SA) [9] for this problem. Let us describe the workflow of these algorithms.

PBIL

1. Initialize a probability vectorp = {p1, p2, ..., pn} with eachpi = 0.5. Here,pi

represents the probability ofxi taking value 1 in the solution
2. Generate a populationP consisting ofM solutions by sampling probabilities inp
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3. Select setD from P consisting ofN best solutions
4. Estimate probabilities ofxi = 1 , for eachxi , as

p(xi = 1) =
∑x∈D,xi=1xi

N

5. Update eachpi in p using pi = pi + λ (p(xi = 1)− pi). Here, 0≤ λ ≤ 1 is a
parameter of the algorithm known as the learning rate

6. Go to step 2 until termination criteria are meet

DEUMd

1. Generate a population,P, consisting ofM solutions
2. Select a setD from P consisting ofN best solutions, whereN ≤ M.
3. For each solution,x, in D, build a linear equation of the form

η(F(x)) = α0 + α1x1 + α2x2 + ...+ αnxn

Where, functionη(F(x)) < 0 is set to−ln(F(x)), for whichF(x), the fitness of
the solutionx, should be≥ 1; α = {α0,α1,α2, ...,αn} are equation parameters.

4. Solve the build system of N equations to estimateα
5. Useα to estimate the distributionp(x) = ∏n

i=1 p(xi), where

p(xi = 1) =
1

1+eβα i
, p(xi = −1) =

1

1+e−βα i

Here,β (inverse temperature coefficient) is set toβ = g · τ; g is current iteration
of the algorithm andτ is the parameter known as the cooling rate

6. GenerateM new solution by samplingp(x) to replaceP and go to step 2 until
termination criteria are meet

GA

1. Generate a populationP consisting ofM solutions
2. Build a breeding pool by selectingN promising solutions fromPusing a selection

strategy
3. Perform crossover on the breeding pool to generate the population of new solu-

tions
4. Perform mutation on new solutions
5. ReplaceP by new solutions and go to step 2 until termination criteria are meet
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SA

1. Randomly generate a solutionsx = {x1,x2, ...,xn}
2. Fori = 1 to r do

a. Randomly mutate a variable inx to getx′

b. Set∆F = F(x′)−F(x)
c. Setx = x′ with probability

p(x′) =

{

1 if ∆F ≤ 0
e−∆F/T if ∆F > 0

Where, temperature coefficientT was set toT = 1/i · τ; here,i is the current
iteration andτ is the parameter of the algorithm called the cooling rate

3. Terminate with answerx.

The two implemented EDAs, PBIL and DEUMd, both fall in the category of uni-
variate EDAs, and assume that the variables in the solutionsare independent. Other
categories of EDA include, bivariate EDA [4][21], assumingat most pair-wise inter-
action between variables, and multivariate EDA [20][13][5], assuming interaction
between multiple variables. Our motivation behind using univariate EDAs is two
fold. Firstly, they are simple, and, therefore, often quickly converge to the optima,
resulting in higher efficiency. This is particularly important in dynamic environment,
where the pricing decisions have to be frequently changed. Secondly, the number of
problems that has been shown to be solved by them is surprisingly large.

4 Experiments and Results

We perform three sets of experiments for both sort-term and long-term analysis,
where each set modelled different scenarios.

For short-term analysis, we assume that the production for agiven day is a neg-
ative function of the price on that day and a positive function of the prices on other
days of the week. More specifically, we assume that at any given time t: a) Produc-
tion decreases by one unit for each unit increase in price; b)an increase in sales
in a given day reduces the sales during other days of the week.Further, the cost of
an additional unit of production was assumed to be zero (all costs are fixed, i.e. no
incremental cost) and the minimum production for each day was also assumed to be
zero. Moreover, it was assumed that demand is higher during the first few days of
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the week2. These are reflected in table 1 showing the setup for alla jt . Also, for ex-
periment 1, maximum production capacity,Mt , was set to 1000 units and maximum
price,Pt , was set to 250/unit (i.e., higher production flexibility and lower pricing
flexibility), for experiment 2,Mt was set to 1000 units andPt was set to 1000/unit
(i.e., higher production flexibility and higher pricing flexibility), and for experiment
3, Mt was set to 300 units andPt was set to 1000/unit during all seven days of the
week (i.e., lower production flexibility and higher pricingflexibility).

Table 1 a jt for all three short-term experiments

t a0t a1t a2t a3t a4t a5t a6t a7t

1 900 -1.0 0.1 0.1 0.1 0.1 0.1 0.1
2 800 0.0 -1.0 0.1 0.1 0.1 0.1 0.1
3 800 0.0 0.0 -1.0 0.1 0.1 0.1 0.1
4 700 0.0 0.0 0.0 -1.0 0.1 0.1 0.1
5 600 0.0 0.0 0.0 0.0 -1.0 0.1 0.1
6 500 0.0 0.0 0.0 0.0 0.0 -1.0 0.1
7 400 0.0 0.0 0.0 0.0 0.0 0.0 -1.0

Table 2 a jt for long-term experiments no 1

t a0t a1t a2t a3t a4t a5t a6t a7t

1 3000 -1.0 0.0 0.0 0.0 0.0 0.0 0.0
2 3000 0.5 -1.0 0.0 0.0 0.0 0.0 0.0
3 3000 0.0 0.5 -1.0 0.0 0.0 0.0 0.0
4 3000 0.0 0.0 0.5 -1.0 0.0 0.0 0.0
5 3000 0.0 0.0 0.0 0.5 -1.0 0.0 0.0
6 3000 0.0 0.0 0.0 0.0 0.5 -1.0 0.0
7 3000 0.0 0.0 0.0 0.0 0.0 0.5 -1.0

Table 3 a jt for long-term experiments no 2 and 3

t a0t a1t a2t a3t a4t a5t a6t a7t

1 3000 -1.0 0.0 0.0 0.0 0.0 0.0 0.0
2 3000 0.9 -1.0 0.0 0.0 0.0 0.0 0.0
3 3000 0.0 0.9 -1.0 0.0 0.0 0.0 0.0
4 3000 0.0 0.0 0.9 -1.0 0.0 0.0 0.0
5 3000 0.0 0.0 0.0 0.9 -1.0 0.0 0.0
6 3000 0.0 0.0 0.0 0.0 0.9 -1.0 0.0
7 3000 0.0 0.0 0.0 0.0 0.0 0.9 -1.0

For long-term analysis, we assumed that the production in a year is a negative
function of the average price in that year and positive function of the production
during previous year. More specifically, we assumed that at any given time t: a)
production decreases by one unit for each pound increase in price; b) the company
keeps a given proportion of its customers from the previous year. These are reflected
in table 2 and 3 showing the setup for alla jt . Further, in all three experiments, the
cost of an additional unit production was assumed to be zero.For experiment 1, the
maximum production capacity,Mt , was set to 3000 units during the first 4 years and
set to 6000 units during the last 3 years, no maximum price,Pt , was set and it was
assumed that the company keeps 50% of its customers from the previous year. For
experiment 2, theMt was set to 3000 units during the first 4 years and set to 6000
units during the last 3 years, no maximum price was set and it was assumed that the

2 This is a typical scenario for products, or services, whose demand is higher during working days
of the week, such as airline seats, mobile phone use, and evenrestaurant lunch hour sales
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company keeps 90% of its customers from the previous year. For experiment 3, the
Mt was set to 3000 units during all 7 years, no maximum price was set and it was
assumed that the company keeps 90% of its customers from the previous year.

Also, for each of these three scenarios in both short-term and long-term environ-
ment, we experiment with eleven different setups for demandfluctuation ranging
from σ = 0 (i.e. no fluctuation) toσ = 1 (i.e. very high fluctuation).

In terms of the algorithms, we set the size of the bit string representing each
E(Qt) to l = 12. Therefore the solution length,n, was equal tol ×N = 84. Since,
there were a very high number of simulations involved, usingmoderate size ofl = 12
significantly reduced the simulation time. Also, in order toparameterise the algo-
rithms, we conduct a range of experiments using wide range ofparameter setups
for each algorithm and choose the setup that had the best performance. Such an
empirical approach to parameterisation is typical in EA research. Following were
the setups used for each of the algorithm: In each execution,the algorithm was al-
lowed to do a fixed number of fitness evaluations. This was equal to 400000 for
PBIL, DEUMd and GA, and 600000 for SA3. The number of fitness evaluation
for PBIL, DEUMd and GA was calculated as the product of their population size,
PS= 400, and the maximum number of generations,MG = 1000. For all experi-
ments, the learning rate for PBIL was set to 0.02 and cooling rate for DEUMd was
set to 0.02. For SA a very small cooling rate of 0.00001 was used. 10 best solu-
tions were selected in PBIL and DEUMd for estimating the marginal probabilities.
For GA, one-point crossover was used with crossover probability set to 0.7 and the
mutation probability set to 0.01.

4.1 Results

A total of 100 executions of each algorithm were done for eachexperiment and the
best policy together with the total profit found in each execution was recorded. The
average total profit (Mean), the standard deviation of totalprofit (Stdev), and the best
total profit (Max) out of all 100 executions for each of the algorithms are shown in
Table 4 for short-term experiment 1, in Table 5 for short-term experiment 2 and in
Table 6 for short-term experiment 3 for five different setupsof σ 4. Similarly, Table
7, 8 and 9 shows the results for long-term experiments 1, 2 and3 respectively.

Also, a reliability factor (RL) measuring the reliability of the policy found by the
algorithm is shown in the tables along with the other three metrics. For each algo-
rithm, the reliability factor is the total percentage of runs where thefinal population
of the algorithm converged to a feasible policy, i.e. the onesatisfying all the con-
straints. If the final population in all of the runs convergedto the feasible solution,
theRL of the suggested policy is very high, since this indicates the high probability

3 Since SA was not performing well in comparison to other algorithms, we allowed it to do more
evaluation, in order to see whether its performance will be improved
4 Although we perform experiment with 11 different setups ofσ , due to the space limitation, we
only present the tables with 5 different setups
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Table 4 Short-term 1
σ metric SA PBIL DEUMd GA

MeanN/A 924938 923564 942937
0.0 StdevN/A 3188 4176 5998

Max N/A 927935 938937 949922
RL 0% 100% 100% 100%

0.2 MeanN/A 907226 904476 914536
StdevN/A 8454 10579 10167
Max N/A 928237 934521 937266

RL 0% 46% 46% 48%
0.5 MeanN/A 899672 898091 N/A

StdevN/A 13946 14223 N/A
Max N/A 925939 931484 N/A

RL 0% 26% 28% 2%
0.8 MeanN/A 886883 890867 N/A

StdevN/A 1452 16913 N/A
Max N/A 917616 934883 N/A

RL 0% 19% 15% 0%
1.0 MeanN/A 878393 884754 N/A

StdevN/A 17150 17642 N/A
Max N/A 911962 926150 N/A

RL 0% 12% 11% 0%

Table 5 Short-term 2
σ metric SA PBIL DEUMd GA

0.0 Mean 1160467117328011732511173243
Stdev 7524 165 233 283
Max 1173253117329911732991173299

RL 100% 100% 100% 100%
0.2 Mean 1129388116611511616221163458

Stdev 22396 4313 6453 5829
Max 1167782117274711723201171941

RL 91% 100% 100% 100%
0.5 Mean 1086776114988111380541136587

Stdev 40797 5965 12182 12827
Max 1155558115982711631721156967

RL 69% 100% 98% 100%
0.8 Mean 1085741115170311409241139230

Stdev 31044 5526 9257 10383
Max 1144442116095611571051159019

RL 55% 100% 98% 100%
1.0 Mean 1084185115318411418911140133

Stdev 28600 4160 8779 8746
Max 1154238116004311583291156692

RL 60% 100% 98% 100%

Table 6 Short-term 3
σ metric SA PBIL DEUMd GA

0.0 Mean 968970968970 968970 968970
Stdev 0.00 0.01 0.00 0.21
Max 968970968970 968970 968970

RL 100% 100% 100% 100%
0.2 Mean 803924847691 849495 786725

Stdev 33489 10418 17122 14848
Max 883369869569 888038 840326

RL 66% 47% 27% 84%
0.5 Mean 690419695022 710566 593640

Stdev 51689 23680 31968 26811
Max 811061764219 793566 674953

RL 38% 49% 39% 86%
0.8 Mean 627084582653 597541 571215

Stdev 53243 7547 25650 13810
Max 774356610820 713464 646189

RL 36% 99% 63% 98%
1.0 Mean 607560582401 577594 570692

Stdev 60597 3837 18248 13769
Max 807870591077 661086 655611

RL 37% 100% 72% 95%

of achieving at least the suggested profit with such demand. Obviously, this is the
case when there is no demand fluctuation (σ = 0 ). However, when uncertainty is
introduced, for some tightly constrained problems, most ofthe policy could be out
of the boundary of the constraints due to the higher fluctuation in demand. The algo-
rithm would then converge to a non feasible region of the solution space. However,
even in these scenarios, few random policies could be sampled with lower fluctua-
tion that satisfies the constraints, simply due to the randomerror. Although, such a
policy is not likely to achieve suggested profit, the algorithm would keep it as the
best policy, even though its final population would convergeto a non feasible pol-
icy. In these scenarios,RL allows us to identify the probability of obtaining such a
false result by examining whether both the best policy foundduring entire iteration
of the algorithm and the final population of the algorithm converged to a feasible
solution. We, therefore, takeRL as the main measure to test the performance of the
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Table 7 Long-term 1
σ metric SA PBIL DEUMd GA

0.0 Mean 27821948282061842820599628205951
Stdev 345156 7 672 814
Max 28205221282061852820618528206185

RL 100% 100% 100% 100%
0.2 Mean 26372470271989362719368326876389

Stdev 706535 229150 274612 208255
Max 27516273278807472781414227486350

RL 79% 78% 78% 91%
0.5 Mean 24173310255260982559311923866124

Stdev 1261215 407533 570856 501397
Max 26969345267881112696417425128428

RL 52% 77% 72% 95%
0.8 Mean 23404411240981482421600323585299

Stdev 1059765 396234 553567 356613
Max 25950583252153532603180224663332

RL 42% 99% 74% 99%
1.0 Mean 23018437240104522388932423639083

Stdev 1257847 140554 438312 268953
Max 25709590242811902525615524170419

RL 35% 100% 77% 99%

Table 8 Long-term 2
σ metric SA PBIL DEUMd GA

0.0 Mean52203789547794495477930954779247
Stdev 2201309 34 237 1130
Max 54777957547794715477947154779470

RL 100% 100% 100% 100%
0.2 Mean46971642502365485042620846345442

Stdev 1928960 686963 1099312 1026420
Max 51136540524121065258957749887769

RL 61% 43% 29% 86%
0.5 Mean40631344441662294392670935766901

Stdev 2900701 1512555 1842733 1595034
Max 50084429489606694825195841688039

RL 50% 29% 34% 85%
0.8 Mean37252169381971043873577034775462

Stdev 3133699 399310 1640259 1399360
Max 46234840388860574300953938414691

RL 45% 47% 43% 95%
1.0 Mean36380548383151313749590034631043

Stdev 3026899 380666 1579632 1495657
Max 46097274405769344189794740827152

RL 46% 57% 48% 97%

Table 9 Long-term 3
σ metric SA PBIL DEUMd GA

0.0 Mean 48635382486364084863639448636406
Stdev 843 0.00 144 2.45
Max 48636408486364084863640848636408

RL 100% 100% 100% 100%
0.2 Mean 40051377426742864291739538312603

Stdev 1808341 843943 1028819 891778
Max 44852209450485824597333540744748

RL 60% 40% 26% 79%
0.5 Mean 33785719345902583534691328040236

Stdev 3308233 1530366 1755677 1076736
Max 43427472402963463990993530777018

RL 46% 43% 39% 86%
0.8 Mean 29884971275369132938715426901891

Stdev 2994800 706814 1763762 803103
Max 41867831305985893504130830141010

RL 48% 96% 45% 96%
1.0 Mean 28830505273620452775336426741629

Stdev 3187659 168031 1216581 553008
Max 37370691276871683154262029126642

RL 44% 100% 57% 98%

algorithms. If two algorithms had similarRL, the mean profit was taken as the next
measurer of the performance. Also note that, the profits presented in the table repre-
sent the expected profit,E(Π) (5) i.e., the one without the error term included. The
value for the best performing algorithm is plotted in bold. Following are the analysis
of the results.

a. Performance of the algorithms in different scenarios:As we can see from
the tables, for all of the experiments, SA has the worst performance compared to
other three algorithms with lowest value forRL. The performance of DEUMd and
PBIL was somewhat comparable for all four metrics, with occasionally one out-
performing another. In terms of mean profit, PBIL and DEUMd has the best per-
formance. Finally, GA has the highest value forRL and therefore has the overall
best performance. It can be noticed that, when there is no uncertainty in demand,
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the reliability of all three EAs are similar, though in termsof mean total profit two
EDAs, PBIL and DEUMd, were better than GA (similar to [26]). However, when
demand uncertainty is introduced our results show that GA, in most cases, retained
its reliability, whereas the reliability of two EDAs decreased.

b. Impact of demand uncertainty on total profit: It can be observed from the
tables that, in general, demand uncertainty reduces the total profit, and is true for
all the tested algorithms. In order to show this, a graph showing the best average
total profit found by the algorithms for long-term experiment 1 with 11 different
setups ofσ is plotted in Figure (1)5. Note that the total profit is mapped to the ratio
between 1 and 0. It can be seen that the total profit reduces as demand fluctuation
gets higher, till it reaches to the mark of 50% (σ = 0.5). However, the decrement in
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profit slows as the fluctuation in demand gets very high, from 0.5 onwards till 1.0.
Interestingly, the high fluctuation in demand results in slight increment in the total
profit. This indicates that, in some cases, higher fluctuation in demand may not have
extremely adverse effect to the profit in comparison to the low fluctuation.

c. Algorithm reliability vs. uncertainty: Another interesting observation that
we make is the effect of fluctuation in demand have on the reliability of the re-
sults found by each algorithms. A typical illustration is given in Figure (2), which
plots theRL found by each algorithm for long-term experiment 1 (the curves were
similar for rest of the instances). It can be noticed that theRL. for the algorithms
are very high (equal to 100%) when there is no fluctuation in the demand. Once
the fluctuation is introduced the reliability decreases. However, interestingly, once
the fluctuation gets very high, the reliability of the results starts increasing back to
100%. As can be seen from the figure, this is true for all three tested algorithms.
This suggests that, when there is some fluctuation in demand,it is difficult to find
a reliable policy that guarantees the profit, however if there is very high fluctuation
in demand the found profit could be guaranteed. These resultsalso supplement the

5 Due to limited space we do not plot this graph for rest of the instances, though we note that the
shape of the curves were similar
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results on the impact of uncertainty on total profit where theprofit slightly increases
once demand fluctuation is very high. The explanation for this is as follows: when
there is extreme fluctuation in demand withσ closer to 1, the fluctuating termQt in
equation (2) is either twice the expected salesE(Qt) or equal to zero (from equation
(3)).It is therefore easier for the algorithm to solve the problem with only two values
for Qt than when there are higher number of possible values forQt (in case of lower
σ ). This therefore increases the reliability of the algorithm.

5 Conclusion

In this paper, we used evolutionary algorithms for solving dynamic pricing prob-
lem in a stochastic setup. The model used in this paper is morerealistic than the
one used in [26] since different uncertainty is imposed to each individual periods.
Our results show that GA is the most reliable algorithm for solving dynamic pric-
ing in stochastic setup with implemented model, although similar to [26] we found
that EDAs were better when there was no demand fluctuation. Wealso found that
higher fluctuation in demand may not have adverse effect in comparison to lower
fluctuation, and could result in increased reliability of the found pricing policy.

We note that the results found in this paper apply to the binary EAs. It would
be interesting to see the performance of the real valued version of these algorithms
on this problem. Also, further work should be done to theoretically justify these
empirical results. This work is under way and interesting results are expected in the
near future.
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