
A Markovianity based Optimisation Algorithm

Siddhartha Shakya

Intelligent Systems Research Centre,

BT Group Chief Technology Office

Adastral Park, Ipswich, UK

sid.shakya@bt.com

Roberto Santana

Intelligent Systems Group

Department of Computer Science and Artificial Intelligence

University of the Basque Country

Paseo Manuel de Lardizábal 1, 20018. San Sebastian - Donostia, Spain

roberto.santana@ehu.es

Abstract

Several EDAs based on Markov networks have been recently proposed. Key ideas behind

these EDAs were to factorise the joint probability distribution in terms of the cliques in the

undirected graph. As such, they make use of the global Markov property of the Markov

network in one form or another. This paper presents a Markov Network based EDA that

exploits Gibbs sampling to sample from the Local Markov property, the Markovianity, and

does not directly model the joint distribution. We call it Markovianity based Optimisation

Algorithm. We also present some initial results on the performance of the proposed algorithm

which show that it can solve problems with complex interaction between variables and its

performance compares well with other Bayesian network based EDAs.

1 Introduction

Estimation of Distribution Algorithms (EDAs) [19][12] are a class of population based optimisa-
tion algorithm that extracts statistical information from the population of solutions and uses it
to generate new solutions. They are able to solve problems that are known to be hard for tradi-
tional Genetic Algorithms (GA) [26]. An EDA maintains the selection and variation concepts of
evolution. However, it replaces the crossover and mutation approach to variation in a traditional
GA by building and sampling a probabilistic model of solutions. The evolution process in an
EDA is explicitly biased towards the significant patterns identified by the probabilistic models.
This contrasts with the more implicit processing of important patterns in traditional GAs. EDAs
are classified as univariate, bivariate or multivariate [28][12] according to the type of interac-
tion between variables in the solution that can be represented by the model of the probability
distribution.

1

Much research in EDAs focuses on different approaches to probabilistic modelling and sam-
pling. Particularly, directed graphical models (Bayesian networks) [23] have been widely studied
and are well established as a useful approach for modelling the distribution in EDAs. Some of the
well known instances of Bayesian network based EDA includes Bayesian Optimisation Algorithm
(BOA) [27], hierarchical Bayesian Optimisation Algorithm [25], Estimation of Bayesian Network
Algorithm (EBNA) [4][11] and Learning Factorised Distribution Algorithm (LFDA) [17]. Some
research on the use of undirected graphical models (Markov networks) [2][15][21] in EDAs has
also been done [30][35][36][31][33][32][34]. Some of the well known instances of Markov network
based EDA includes DEUM [33] and MN-EDA [31]. Most of these Markov network based EDAs
are based on the idea of factorising the joint probability distribution from an undirected graph.
More precisely, they make use of the global Markov property of the Markov network, the joint
probability distribution, in one form or another.

This paper describes an EDA based on local Markov property, the Markovianity, that does not
explicitly factorise the joint probability distribution. Instead, it estimates conditional probabilities
in terms of neighbouring nodes in the undirected graph and samples from them using Gibbs
sampler. We call it the Markovianity based Optimisation Algorithm (MOA) 1. MOA incorporates
features that have been independently employed in previous implementations of EDAs based on
Markov models, but have not been used together. The resulting algorithm is qualitatively different
to its predecessors. It does structural learning of the probabilistic model from the data but it
can also take advantage of a priori structural information in a straightforward way. Complex
approximations to the joint probability distribution are avoided and the temperature parameter
is included to balance the exploration and exploitation of the search space. The use of Gibbs
sampling remains as a key component, allowing MOA to deal with interactions represented by
cycles.

The two main objectives of this paper are:

1. to introduce a Markov network based EDA using the local Markov property and avoid the
complications involved in estimating joint probability distribution for a Markov network

2. to use Gibbs sampling as the method to sample from the undirected model

The outline of the paper is as follows. Section 2 gives background on the use of probabilistic
graphical models in EDAs. It also introduces the local and global properties of Markov Network.
Section 3 reviews several Markov network based EDAs that make use of the global Markov prop-
erties. Section 4 presents a detailed description of the MOA. Section 5 presents the experimental
results on the performance of MOA on several test functions. It also compares the performance
of MOA with Gibbs sampling with the one without it. Section 6 highlights some future work and
concludes the paper.

2 EDAs and Probabilistic graphical models

An EDA regards a solution, x = {x1, x2, .., xn}, as a set of values taken by a set of variables,
X = {X1, X2, ..., Xn}. EDAs begin by initialising a population of solutions, P . A set of promising
solutionsD is then selected from P , and is used to estimate a probabilistic model of X . The model
is then sampled to generate the next population. Figure 1 shows the general EDA workflow.

1Initial description of MOA is published in [38]

2

Estimation of Distribution Algorithm

1. Generate initial (parent) population P of size M

2. Select set D from P consisting of N solutions, where N <= M

3. Estimate the probability distribution of variables in the solution from D

4. Sample distribution to generate offspring, and replace parents

5. Go to step 2 until termination criteria are met

Figure 1: The workflow of the general Estimation of Distribution Algorithm

Estimation of the probability distribution lies in the very heart of an EDA. Its effectiveness
largely depends on how well it estimates and samples the probability distribution. This is where
probabilistic graphical models [13] can be useful. Probabilistic graphical models provide an effi-
cient and effective tool to represent the probability distribution of the random variables. They
can be seen as a merger of two disciplines, probability theory and graph theory [9]. They are
mainly categorised into two groups 2. 1) Directed models (Bayesian networks) and 2) Undirected
models (Markov networks / Markov Random Fields).

2.1 Bayesian networks

A Bayesian network can be regarded as a pair (B,Θ), where B is the structure of the model and
the Θ is a set of parameters of the model. The structure B is a Directed Acyclic Graph (DAG)3,
where each node corresponds to a variable in the modelled data set and each edge corresponds to a
conditional dependency. A set of nodes Πi is said to be the parent ofXi if there are edges from each
variable in Πi pointing to Xi. The parameter Θ = {p(x1|Π1), p(x2|Π2), ..., p(xn|Πn)} of the model
is the set of conditional probabilities, where each p(xi|Πi) is the set of probabilities associated
with a variable Xi = xi given it’s parent variables Πi. A Bayesian network is characterized in
terms of the joint probability distribution of the variables in the modelled dataset as

p(x) =

n
∏

i=1

p(xi|Πi) (1)

2.2 Markov networks

A Markov network is a pair (G,Ψ), where G is the structure and the Ψ is the parameter set of
the network. G is an undirected graph where each node corresponds to a random variable in

2There are several other categories of probabilistic graphical model such as factor graph and mixture models.
However, for the purpose of this paper, we limit them to two categories.

3A DAG is a graph where each edge joining two nodes is a directed edge, and also there is no cycle in the graph,
i.e. it is not possible to start from a node and, travelling towards the correct direction, return back to the starting
node

3

X1

X3 X2

X5 X6 X4

Figure 2: A Markov network structure on 6 random variables

the modelled data set and each edge corresponds to conditional dependencies between variables.
However, unlike Bayesian networks, the edges in Markov networks are undirected. Here, the
relationship between two nodes should be seen as a neighbourhood relationship, rather than a
parenthood relationship. We use N = {N1, N2, ..., Nn} to define a neighbourhood system on
G, where each Ni is the set of nodes neighbouring to a node Xi. Figure 2 shows an example
of a Markov network structure on 6 random variables. Here, variable X1 has 2 neighbours,
N1 = {X2, X3}. Similarly, variable X2 has 4 neighbours N2 = {X1, X3, X4, X5}.

A Markov network is characterised in terms of neighbourhood relationship between variables
by its local Markov property known as Markovianity [2][15], which states that the conditional
probability of a node Xi given the rest of the variables can be completely defined in terms of the
conditional probability of the node given its neighboring states Ni. Ni is sometimes referred to
as Markov Blanket for Xi [20]. In terms of probability it can be written as

p(xi|x− {xi}) = p(xi|Ni) (2)

A Markov network is also characterised in terms of cliques4 in the undirected graph by its global
property, the joint probability distribution, and can be written as

p(x) =
1

Z

m
∏

i=1

ψi(ci) (3)

Where, ψi(ci) (or more precisely ψi(Ci = ci)) is a potential function on clique Ci ∈ X , m is the
number of cliques in the structure G. Z =

∑

x∈Ω

∏m
i=1 ψi(ci) is the normalising constant known

as the partition function which ensures that
∑

x∈Ω p(x) = 1. Here, Ω is the set of all possible
combination of the variables in X .

Equivalently, using Hammersley-Clifford theorem [7], the global Markov property can also be
written in terms of Gibbs distribution as

p(x) =
e−U(x)/T

Z
(4)

where,

Z =
∑

y∈Ω

e−U(y)/T (5)

4Given an undirected graph G, a clique is a fully connected subset of the nodes. For example, in Figure 2,
variables {X1, X2, X3} define a clique.

4

is a normalising constant, T is a parameter of the Gibbs distribution known as the temperature
and U(x) (or more precisely U(X = x)) is known as the energy of the distribution.

Given an undirected graph, G, on X , energy, U(x), is defined as a sum of potential functions
over the cliques, Ci, in G.

U(x) =
m

∑

i=1

ui(ci) (6)

Here, ui(ci) (or more precisely ui(Ci = ci)) is a potential function defined over a clique Ci ∈ X .
Equation (4), in terms of clique potential function, can also be written as

p(x) =
e−

P

m
i=1

ui(ci)/T

Z
(7)

Note that the relationship between ψi(ci) in (3) and ui(ci) in (7) is defined as

ψi(ci) = e−ui(ci)/T (8)

It is the clique potential function ui(ci), that captures the interaction between variables in
the clique ci, and should be carefully defined in order to get a desired behaviour of the Markov
network. We do not go into detail on different ways to defining the clique potential functions,
interested readers are advised to see [15], [33].

3 Markov network based EDAs

Most of the EDAs based on Markov network use its global property (3) in one form or another.
More precisely, they factorise the joint probability distribution in terms of the cliques in the
undirected graph and sample it to generate new solutions.

Three main categories can be distinguished in this class of Markov network based EDAs. They
are:

1. Distribution Estimation using Markov network algorithm (DEUM)

2. Markov Network Estimation of Distribution Algorithm (MN-EDA), Markov network Fac-
torised Distribution Algorithm (MN-FDA)

3. Factorised distribution algorithm (FDA)

DEUM [35][33] is a family of Markov network based EDA that builds a model of fitness function in
terms of the cliques in the undirected graph and factorises joint probability as a Gibbs distribution.
The parameters of the fitness model is then estimated from the population of solutions and Markov
chain Monte Carlo simulations, including Gibbs sampler [5] and Metropolis sampler [16], are used
to sample new solutions. Several variants of DEUM have been proposed and are found to perform
well in comparison to other EDAs of their class in range of different test problems, including Ising
Spin Glass and SAT. [35][36][37].

MN-EDA [31] and MN-FDA [30] are based on the idea of making an approximation to the joint
probability distribution in terms of cliques in the undirected graph. MN-EDA does so by means
of Kikuchi approximation [10] of the joint distribution and uses a Gibbs sampler to sample the
new solutions. Similarly, MN-FDA constructs a junction graph [30] from the undirected structure

5

that approximates the joint probability, which is then sampled using Probabilistic logic sampling
(PLS) [8] to generate new solutions.

FDA is one of the early EDAs proposed by [18]. Based on the running intersection property [13]
of an undirected graph, it first identifies residuals and separators from the undirected structure
and constructs a junction tree [14] that completely specifies the joint probability distribution.
Junction tree is then sampled using PLS to generate new solution. An FDA able to learn a
junction tree from the data was introduced in [22].

4 Markovianity based Optimisation Algorithm (MOA)

All Markov network based EDAs described in previous section approximate and sample global
Markov property in one form or another. However, the local Markov property, as defined in (2),
can be directly used in EDAs without requiring to define the joint probability distribution. Here
we describe an EDA using the local Markov property, the Markovianity. We call it Markovianity
based Optimisation Algorithm (MOA). Since, it only exploits the local Markov property, MOA can
be seen as the subset of the other global Markov property based EDAs, with a simpler workflow.
Furthermore, in addition to gain in efficiency, it avoids the numerical operations associated to the
computation of potentials or Kikuchi approximation, which may also represent gains in model
accuracy.

Markovianity based Optimisation Algorithm

1. Generate initial (parent) population P of size M

2. Select set D from P consisting of N solutions, where N <= M

3. Estimate structure of a Markov network from D

4. Estimate local Markov conditional probabilities, p(xi|Ni), for each variable Xi as defined
by the undirected structure and sample them to generate new population

5. Replace old population by new one and go to step 2 until termination criteria are meet

Figure 3: The workflow of Markovianity based Optimisation Algorithm

Figure 3 shows the workflow of MOA. It starts by generating a population of solutions. A set
of solutions is then selected from the population using a selection method, which are then used
to estimate the structure of the Markov network. The conditional probabilities defined by the
local Markov property (2) are then estimated from the selected set of solutions and sampled to
generate the new population.

A number of different approaches can be used in order to estimate an undirected structure. For

6

the purpose of this paper we implement a mutual information based approach 5. More precisely,
we estimate cross entropy of each pair of variables in the solution to create a matrix of mutual
information. The pairs with the mutual information higher than a certain threshold are then
made neighbours. Also, in order to avoid an overly complex network, we limit the number of
neighbours that a variable can have to a certain number. Figure 4 describes the implemented
Markov network structure learning algorithm.

Estimating structure - Step 3 of MOA

1. Create a matrix of mutual information, MI, by estimating cross entropy for each pair of
variables in the solution. Cross entropy between two random variables, A and B, is given
by

CE(A,B) =
∑

a,b

p(a, b)log

(

p(a, b)

p(a) · p(b)

)

where sum is over all possible combinations of A and B, and p(a, b) is the joint probability
of A = a and B = b computed from D

2. Create an edge between two variables, if the mutual information between them is higher
than the given threshold. Here we compute the threshold, TR as TR = avg(MI) ∗ sig,
where avg(MI) is the average of the elements of the MI matrix and sig is the significance
parameter, which for the purpose of this paper is set to 1.5.

3. If the number of neighbours to a variable is higher than the maximum number, MN , allowed,
only keep MN neighbours that have the highest mutual information.

Figure 4: The workflow of an undirected structure learning algorithm

After estimating the structure of the network, the next step is to estimate the conditional
probabilities and sample new population from it. By its definition, an undirected structure may
contain cycles. Apart from some restricted set of undirected structures, for example those that
satisfy running intersection properties and can be formulated as a directed acyclic graph, most
of the Markov networks do not satisfy the ancestral ordering of variables needed by PLS. Alter-
natively, Markov Chain Monte Carlo (MCMC) [16] methods could be used for sampling. We use
Gibbs sampler [5], a class of MCMC method, as the sampling method in MOA. A number of
different versions of Gibbs sampler can be implemented for this purpose. Figure 5 describes a
version that has been implemented for the purpose of this work. Note that each execution of the
Gibbs sampler creates a single solution. Multiple execution of Gibbs sampler should be done in
order to create the population of solutions.

5Mutual information was originally used by [1] to learn tree-based factorisations in EDAs

7

Gibbs Sampler - Step 4 of MOA

1. Generate a solution x = {x1, x2, .., xn} at random.

2. For r iterations (in this paper we set r = n× ln(n)× IT , where IT , the iteration coefficient,
is set to 4), do the following:

(a) Choose a variable xi from x at random.

(b) Using selected set of solutions, D, compute conditional probabilities p(xi|Ni) for each
value of xi as Gibbs probability,

p(xi|Ni) =
ep(xi,Ni)/T

∑

x
′

i
ep(x

′

i
,Ni)/T

where sum is over all possible values of xi. For example, in binary case, where
xi = {0, 1}, probability of xi = 1 given the value of its neighbours Ni is written as

p(1|Ni) =
ep(1,Ni)/T

ep(1,Ni)/T + ep(0,Ni)/T

Here, T is the temperature coefficient that controls the convergence of the Gibbs
probability distribution. Increasing T makes the distribution close to being uniform,
and decreasing T converges it to an extrema.

(c) Sample p(xi|Ni) to get new xi.

3. Terminate with answer x.

Figure 5: The workflow of implemented Gibbs Sampler algorithm

Here, we set a linear schedule for the temperature as T = 1
g×CR , where g is the current

generation of MOA and CR is the cooling rate parameter. CR can be varied in order to control
the convergence of MOA. For instance, setting CR higher will result in quick convergence of the
conditional probabilities and therefore a quick convergence to a solution, i.e. gain in efficiency,
but with less exploration of the search space. Conversely, smaller CR would result in slower
convergence of the conditional probabilities and therefore slower convergence to a solution, i.e.
more exploration of the search space, but with higher fitness evaluation. For the purpose of this
paper we set CR to 0.5, since large number of different experiments preformed showed this value
to be a good compromise between exploration and the exploitation of the search space for the
problems tackled.

8

5 Experimental results

We test MOA on a number deceptive functions with multivariate dependency between variables.
They are, deceptive function of order 3 (deceptive3) [6] and the trap function [24]. Both of these
functions are widely used in the EDA literature as the benchmark to test the performance of
different EDAs [18, 27, 34]. The deceptive3 function is defined as

deceptive3(x) =

n
3

∑

i=1

fGdec(x3i−2 + x3i−1 + x3i) (9)

fGdec(u) =

0.9 for u = 0
0.8 for u = 1
0.0 for u = 2
1.0 for u = 3

Where, u is the number of ones in the input block of 3 bits.
Similarly, a Trap function of order k can be defined as

ftrap,k(x) =

n/k
∑

i=1

trapk(xbi,1 + ...+ xbi,k) (10)

Each block (xbi,1 + ... + xbi,k) gives a fitness which can be calculated through a general trap
function of order k

trapk(u) =

{

fhigh, if u = k

flow − u flow

k−1 , otherwise

Where, u is the number of ones in the input block of k bits, and fhigh and flow are parameters
that control the distance between the local and global optima. .

In order to test the different aspects of MOA performance, we divide our experiments into six
parts. In the first part, we compare the performance of MOA with that of other Bayesian network
based EDAs and GAs on above functions. Next, we slightly modify the problem formulation and
introduce a permutation to the ordering of bits in the problem, such that bits in the block are no
more tightly linked to each other. This makes the problem very hard to solve for a blind crossover
based GA. In contrast, we show that, as expected, this does not make any difference to the MOA
performance. In the third part, we further increase the difficulty of the problem by introducing
the overlapping dependency between blocks and test the performance of MOA on it. Introducing
overlaps makes the problem very difficult, since one (or more) variable can be part of two (or
more) blocks. In this case, even if the fitness maximising configuration for a block is found, it can
be very easily disrupted due to the incorrect configuration of another block. In the fourth part,
we show how we can easily incorporate problem specific knowledge about the interaction between
variables in MOA. We do so by testing MOA on different versions of the above functions when
prior knowledge about the problem is given as the undirected graph. In the fifth part, we show
that the implemented structure learning algorithm in MOA can correctly identify the structure
for above problems even when little (or no) knowledge about the problem structure is known. We
also suggest other alternative structure learning algorithms that could improve the performance
of MOA. Finally in the sixth part, we compare the performance of MOA with Gibbs sampling to
that of MOA without Gibbs sampling and show that Gibbs sampling is one of the key components
of MOA workflow.

9

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

F
itn

es
s

ev
al

ua
tio

n

Problem size

MOA
GA

(a) MOA vs GA on deceptive3 function

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

F
itn

es
s

ev
al

ua
tio

n

Problem size

MOA
GA

(b) MOA vs GA on trap5 function

Figure 6: Scalability graph comparing the performance of MOA and GA for both deceptive and
trap function of size ranging from 30 bits to 360 bits

5.1 Comparison with other EAs

In this section, we compare the performance of MOA with the performance of its Bayesian network
counter part, the BOA. Comparison is made with the BOA results reported [27]. BOA has been
shown to significantly outperform GA in both of these functions. Therefore, we also find it
interesting to compare the performance of MOA with GA.

For both deceptive3 and trap function, problem size, n, ranged from 30 to 360 bits. The order
of interaction in trap function was set to 5. We call it trap5, which is the instance of the general
trap function where k = 5, fhigh = 5 and flow = 4. For all experiments, population size (PS) was
gradually increased until all of the 10 runs of the algorithm found the optimum solution.

Parameter setups for MOA were as follows: population size (PS) ranged from 1000 to 32000
for 30 to 360 bit deceptive3 problems and from 600 to 24000 for 30 to 360 bit trap5 problems.
Truncation selection with selection size (SS) of 50% of the PS was used. In order to prevent
quick diversity loss, the elitism parameter (EL) was set to the 50% of the PS, i.e., best half of the
parent population was preserved in the next generation. Also, the number of maximum neighbours
(MN) allowed to the structure of the Markov network in MOA was set to 2 for deceptive function
and 4 for trap5 function. This is similar to the setup for BOA in [27], where maximum number
of parents for each node in a Bayesian network was limited to 2 for deceptive function and 4 for
trap5 function.

For GA, population size (PS) ranged from 600 to 18000 for 30 to 360 bit deceptive3 problems
and from 600 to 20000 for 30 to 360 bit trap5 problems. Truncation selection with selection size
(SS) of 50% of the PS was used. Similar to [27], onepoint crossover with crossover probability of
1 was used. The mutation probability was, however, set to to 0.0001, a lot smaller value than that
set in []. Also, no elitism was used, i.e. parent population was completely replaced by the child
population. We found that with such smaller mutation rate and complete replacement strategy,
GA performance was significantly better than that reported in [27].

Table 1 shows the average ± the standard deviation of the fitness evaluations required by both

10

MOA and GA to find the optimum solution for deceptive3 over 10 runs. Similarly, Table 2 shows
the same statistic for trap5 problem. Also, Figure 6(a) shows the scalability graph comparing the
performance of both MOA and GA over different problem sizes for deceptive problem and Figure
6(b) shows the same for trap problem.

Table 1: The average ± standard deviation required by MOA and GA to find the optimum
solution for deceptive3 function of size 30 to 360 over 10 runs

Size MOA-Evaluations GA-Evaluations

30 8100 ± 459 9300 ± 990
90 43340 ± 1063 65340 ± 3292
180 124490 ± 1866 289500 ± 10659
240 195750 ± 4500 679000 ± 22828
360 360000 ± 11314 1648800 ± 37326

Table 2: The average ± standard deviation required by MOA and GA to find the optimum
solution for trap5 function of size 30 to 360 over 10 runs

Size MOA-Evaluations GA-Evaluations

30 6660 ± 276 8940 ± 1586
90 45900 ± 1049 63800 ± 9402
180 136420 ± 2157 255000 ± 12019
240 226500 ± 3000 588889 ± 27131
360 415000 ± 7071 1472000 ± 60992

Our results show that, for smaller problems, the performance of MOA and GA is comparable,
however once the problem size start to get larger, MOA significantly outperforms GA in terms
of number of fitness evaluation required to find the optimum solution. Also, the lower standard
deviation for fitness evaluation in MOA suggests that, it is more predictable algorithm than GA.

Also, in comparison to BOA, MOA requires slightly less fitness evaluation. This can be
observed by comparing the MOA results with that presented in [27] for BOA. As an example,
it is shown in [27] that BOA requires in average around 160000 fitness evaluation to solve 180
bit deceptive function, while MOA only requires around 125000 fitness evaluation. Also, for trap
function, BOA in average requires around 220000 fitness evaluations, while MOA only requires
around 136000 fitness evolutions. 6

5.2 Introducing permutation

The purpose of the experiments in this section is to show that different ordering of the bits in the
solution does not affect the performance of the MOA. In other words, we show that MOA does not
care whether the bits in the blocks are tightly located, closer to each other, or whether they are

6We note that in order to make the comparison fair, we compare the performance MOA with the version of
BOA presented in [27] which also had a parameter, similar to MN, that restricted the maximum number of parents
going to a node. Similar to the later version of BOA, improved structure learning algorithm is likely to remove
this parameter from MOA workflow. Doing so remains the part of the future work.

11

loosely scattered all over the solution. For this purpose, we randomly permute the ordering of the
bits in the solution for Trap5 problem. An example of original and modified dependency graph is
shown in figure 7 (b) and figure 7 (c) respectively. This makes the bits in a single block further
apart from each other. This obviously has a negative effect to the performance of the GA since
the crossover operator do not take into account the dependency between variable in the solution
and can easily disrupt a correct configuration of the block. We test both GA and MOA to the
permuted trap5 function. The parameter setups were same as in previous section. As expected,
GA was not able to find the solution, even for the very small problem size of 30 bits and with a
very high population size of 20000. However, MOA was able to find the solution in similar fitness
evaluation as with non-permuted trap5. The result is shown in figure 8.

5.3 Introducing overlaps

In this section, we introduce overlap between the blocks in the solution. For example, overlap of
order one means a variable in a block is common to the next block. Figure 7 (d) shows an example
of the overlap of order one in trap function of order 4 (trap4). Notice that there is a cycle, i.e.,
the last block overlaps with the first block. These are difficult class of problems, since, not only
the deceptiveness and the loose linkage of the variables in block is present, but also there are
overlapping dependencies between these blocks. Here, not only finding the correct configuration
of values in block is difficult, but once found, preserving them is also very difficult, since it can
be easily disrupted by the incorrect configuration of the neighbouring blocks. Note that, with the
introduction of overlaps, the number of blocks also increases in comparison to non overlapping
problem of the same size. For example, there are 15 blocks of order 4 in 60 bit non-overlapping
trap4 function. In contrast, there are 20 blocks of order 4 in order one overlapping trap4 problem.

We test MOA on order one overlapping trap problems with k = 4 (trap4). The problem size
ranged from 30 to 120 bits. As with previous case, GA was not able to find the solution even
for the very small sized problem of 30 bits. The parameter setups for MOA were as follows:
population size (PS) ranged from 600 to 6000 for 30 to 120 bit problems. Truncation selection
with selection size (SS) of 50% of the PS was used. In order to prevent quick diversity loss, the
elitism parameter (EL) was set to the 50% of the PS, i.e., best half of the parent population was
preserved in the next generation. Also, the number of maximum neighbours (MN) allowed to
the structure of the Markov network in MOA was set to 6, since (as can be seen from the Figure
7 (d)) there can be at most 6 neighbours for a variable.

The scalability graph showing the number of fitness evaluations required by MOA to find the
solution for 30 to 120 bit permuted trap4 problem with overlap of order 1 is shown in Figure
9. We also plot the same statistic for the MOA on non-permuted trap4 function with overlap of
order 1, in order to (again) show that ordering of bits in the solution does not make difference
to the performance of MOA. Since, we could not find any literatures testing other EDAs on this
function, no comparison could be made to assess the performance of MOA with respect to that
of other EDAs 7.

7We note that in [29], BOA has been tested on a multivariate function called random decomposable problems
(rADPs). While, this function also has overlapping dependency, it does not consider deceptiveness and therefore
has different properties. Testing MOA to rADPs remains one of the works for future

12

a. The ordering of the variables in the solution

b. The original dependency

c. A permuted dependency

d. An overlapping permuted dependency

X5

X1

X3

X12

X6

X2

X10

X11

X4

X7

X8

X9

X5

X1

X3

X12

X2

X11

X6

X10

X4

X7

X9

X8

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

Figure 7: An order 4 deceptive problem with different dependency structure

13

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

F
itn

es
s

ev
al

ua
tio

n

Problem size

MOA (Trap5)
MOA (Trap5-permuted)

Figure 8: Number of fitness evaluations required by MOA on trap5 function of size ranging from
30 to 360 bits with both permuted ordering and non-permuted ordering of bits

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 30 60 90 120

F
itn

es
s

ev
al

ua
tio

n

Problem size

MOA (Trap4-overlap1)
MOA (Trap4-permuted-overlap1)

Figure 9: Number of fitness evaluations required by MOA on overlapping trap4 function of order
1 for size ranging from 30 to 120 bits with both permuted ordering and non-permuted ordering
of bits

14

5.4 Incorporating prior information

In this part, we show how we can incorporate the prior information about the problem dependency
in MOA and also analyse its effect to the performance of the algorithm. For this, we test MOA on
different deceptive functions shown in Figure 7, by giving their dependency as a undirected graph.
We note that with a Bayesian network based EDA, finding exact DAG structure for deceptive
problems (in particular, to the one with cycles, Figure 7 (d)) can be difficult [3]. While with
MOA, such dependency can be directly represented as a Markov network. Results comparing
the performance of MOA with pre given structure with that of MOA that required to learn the
structure from the data is shown in figure 10(a) for deceptive3 function, in figure 10(b) for trap5
function and in figure 10(c) for overlapping trap4 function.

It can be seen that, for deceptive3 problem, there was no improvement in the performance,
while for trap5 problem the performance improvement was significant. Again, for overlapping
trap4 problem the improvement in performance was marginal. These results suggest that, giving
the prior information about the dependency may improve the performance of the algorithm,
however, this is not guaranteed and is highly problem dependent. These results are interesting
and clearly require further work in order to get the explanation of these effects. These results
also link us back to an open question in the EDA, that is whether it is necessary to have an exact
problem structure in order to get a better performance?

5.5 Untuned vs tuned MOA

In all of the experiments presented so far, the maximum neighbour (MN) parameter for MOA
was tuned in advance according to the problem structure. In this part, we show that MOA can
solve the problem even without tuning the maximum neighbour (MN) parameter. For that, we
perform two sets of experiments, each with different setup for the number of maximum neighbours
(MN) allowed to the structure of the Markov network in MOA. For the first set of experiments,
MN was set to 8 for both deceptive3 and trap5 functions. This emulates the situation when the
structure of the network is completely unknown and is left to the algorithm to find, i.e., MN
is un-tuned. For the second set of experiments, the MN was set to 2 for deceptive3 function
and 4 for trap5 function (as with previous experiments). This emulates the situation when some
experiments have been done to tune MN .

Parameter setups were as follows: for all experiments, population size (PS) was gradually
increased until all of the 20 runs of the algorithm found the optimum solution. For the first set of
experiments with un-tuned MN , i,e, when MN = 8, PS ranged from 1000 to 80000 for 30 to 180
bit deceptive3 problems and from 1000 to 38000 for 30 to 180 bit trap5 problems. Similarly, for
the second set of experiments with tuned MN , i.e. with MN = 2 for deceptive3 and MN = 4 for
trap5, PS ranged from 1000 to 32000 for 30 to 360 bit deceptive3 problems and 600 to 20000 for
the trap5 problems of similar size. Truncation selection with selection size (SS) of 50% of the PS
was used and elitism (EL) was set to the 50% of the PS, i.e., best half of the parent population
was preserved in the next generation.

For each problem size, MOA was executed for 20 times and the number of fitness evaluations
required to find the optimal solution was recorded. Table 3 shows, for the experiments with tuned
MN , the average, the standard deviation and the maximum of the fitness evaluations required by
MOA to find the optimum solution for both deceptive3 and trap5 functions of different sizes over
20 runs. Similarly, Table 4 shows same statistic for the experiments with un-tuned MN . Also,

15

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

F
itn

es
s

ev
al

ua
tio

n

Problem size

MOA(Structure learning)
MOA(Structure given)

(a) For deceptive3 function

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

F
itn

es
s

ev
al

ua
tio

n

Problem size

MOA(Structure learning)
MOA(Structure given)

(b) For trap5 function

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 30 60 90 120

F
itn

es
s

ev
al

ua
tio

n

Problem size

MOA(Structure learning)
MOA(Structure given)

(c) For overlapping trap4 function of order 1

Figure 10: Scalability graph showing the number of fitness evaluations required by MOA when
the structure of the problem is learnt from the population and when the structure of the problem
is given as the prior information

16

Table 3: The average, the standard deviation and the maximum fitness evaluation required by
MOA to find the optimum solution for both deceptive3 and trap5 function of size 30 to 360 over
20 runs with tuned MN, i.e., with MN = 2 for deceptive3 and MN = 4 for trap5

deceptive3 trap5
Size Avg Stdev Max Avg Stdev Max

30 8100 459.47 9000 6660 275.68 7200
60 24440 822.19 26000 23280 3187.75 29600
90 43340 1062.70 44000 45900 1048.81 48000
120 62250 2121.32 66000 75440 2611.17 80500
150 82333 1300.00 85800 104100 4701.06 117000
180 124490 1865.74 129800 136420 2157.06 140600
210 152250 3500.00 154000 182500 2886.75 185000
240 195750 4500.00 198000 226500 3000.00 228000
360 360000 11313.71 368000 415000 7071.07 420000

Table 4: The average, the standard deviation and the maximum fitness evaluation required by
MOA to find the optimum solution for both deceptive3 and trap5 function of size 30 to 180 over
20 runs with un-tuned MN , i.e. with MN = 8

deceptive3 trap5
Size Avg Stdev Max Avg Stdev Max

30 9750 1379.41 13500 10650 411.64 11000
60 60250 7115.12 80000 40900 1728.84 43000
90 163200 4732.86 168000 129000 4281.74 135000
120 322000 9033.27 336000 303000 5019.96 312000
150 563333 15055.45 580000 565000 10488.09 580000
180 940000 28284.27 960000 940500 13435.03 950000

17

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

F
itn

es
s

ev
al

ua
tio

n

Problem size

Deceptive (MN=2)
Trap (MN=4)

(a) With tuned MN (i.e. MN = 2 for decep-

tive3 and MN = 4 for trap5)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+006

 0 30 60 90 120 150 180 210

F
itn

es
s

ev
al

ua
tio

n

Problem size

Deceptive (MN=8)
Trap (MN=8)

(b) With untuned MN (i.e. MN = 8)

Figure 11: Comparative performance of MOA on deceptive3 and trap5 functions of size ranging
from 30 to 360

Figure 11(a) shows the scalability of MOA over different problem sizes for the set of experiments
with tuned MN , and Figure 11(b) shows the same information for the experiments with un-tuned
MN .

It can be noticed that, when MN is tuned (Figure 11(a)), the trap5 function requires slightly
higher number of function evaluations in comparison to deceptive3 function. This is expected
since the order of interaction in trap5 is higher than that in deceptive3 function, taking longer
to find the solution. Also, when MN is not tuned (Figure 11(b)), the deceptive3 function, at
the beginning, required slightly higher number of function evaluations. This is due to the larger
population required by the structure learning algorithm to correctly discard 6 neighbours out of
allowed 8. On the other hand, for trap5 function, only 4 out of 8 allowed neighbours had to be
discarded. However, as the problem size grows, the task of tackling the higher order interaction
in trap5 outweighs the structure learning task in deceptive3, resulting in almost similar fitness
evaluation for both problems.

Also, in Figure 12(a), we compare the scalability of MOA on deceptive3 function with both
un-tuned and tuned MN , i.e. with MN = 8 and MN = 2. Similarly, In Figure 12(b), we compare
the same for the trap5 function, i.e. with both MN = 8 and MN = 4. These comparisons show
that correctly tuning MN can result in a significant performance improvement. However, we
again note that this issue of tuning is specific to the structure learning algorithm used in MOA
and may be resolved by using alternative structure learning algorithms.

5.6 Gibbs sampling vs. temperature less sampling

In order to highlight the importance of Gibbs sampling in MOA, in this part, we compare the
performance of MOA with Gibbs sampling with that of MOA with temperature less sampling.
The workflow of temperature less sampling is the same as the one shown in Figure 5, except for

18

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+006

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

F
itn

es
s

ev
al

ua
tio

n

Problem size

Deceptive (MN=8)
Deceptive (MN=2)

(a) Untuned vs tuned MN on deceptive3 func-
tion

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+006

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

F
itn

es
s

ev
al

ua
tio

n

Problem size

Trap (MN=8)
Trap (MN=4)

(b) Untuned vs tuned MN on trap5 function

Figure 12: Performance of MOA with both un-tuned and tuned maximum neighbour size MN

the conditional probability estimation part, which is done as

p(xi|Ni) =
p(xi, Ni)

∑

x
′

i
p(x

′

i, Ni)

We found that temperature less sampling was not able to find the solution for higher sized problems
within a reasonable population size. Figures 13(a) shows a typical example of how maximum
and average fitness in the population progress in each generation during a typical run of MOA
with Gibbs sampling for 60 bit trap function. Similarly, Figure 13(b) shows the same for the
temperature less sampling. The parameter set up were as follows, PS was set to 2000, SS and
EL were set to 50% of PS, and MN was set to 4. The algorithm was stopped once the optimum
was found, or 50 generations were passed.

We can notice that the temperature less sampling could not find the optimal solution in 50
generations and converged to some near optimal solution, where as Gibbs sampling finds the
solution in around 30 generations. We can also see that the curves in Gibbs sampling is of
sigmoid shape in comparison to (near) linear shape in temperature less sampling. This suggests
that temperature less sampling narrows the search space as generation progress. In contrast,
Gibbs sampling first (thoroughly) explores the search space and then converges to a solution.
Cooling rate (CR) parameter influences the form of the curve in the Gibbs sampling. The lower
the CR, the higher the exploration and more sigmoid the curve is.

6 Theoretical analysis of Gibbs sampler

Gibbs sampler plays an important role in the way the information contained in the Markov model
is used for exploring the promising areas of search. In some cases, the expected waiting time of
the Gibbs Sampler for moves from states of high probability to states of lower probability can
be very long. It is important to theoretically analyze how the behaviour of the Gibbs sampler is
related to some particular features of the problem.

19

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

F
itn

es
s

Generation

Max
Avg

(a) Gibbs sampling with CR = 0.5

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

F
itn

es
s

Generation

Max
Avg

(b) Temperature less sampling

Figure 13: An example of how maximum and average fitness in the population progress in each
generation during a typical run of MOA on 60 bit trap function

In this section we show some interesting theoretical properties of the Gibbs sampler by means of
an example. We compute the Boltzmann distribution associated to the deceptive3 function (Equa-
tion 9) and analyze the behaviour of Gibbs sampling for this distribution. We use the smallest
possible set of variables X = X1, X2, X3, and define the joint probability distribution.

p(x) =
efdeceptive(x)/T

∑

x′ efdeceptive(x′)/T
(11)

For T = 1, the probabilities computed are p(0, 0, 0) = 0.16558, p(0, 0, 1) = 0.14982, p(0, 1, 1) =
0.06732 and p(1, 1, 1) = 0.18299. Since the function values depend on the unitation, we also have:
p(0, 0, 1) = p(0, 1, 0) = p(1, 0, 0), p(0, 1, 1) = p(1, 1, 0) = p(1, 0, 1) and the conditional probabilities
of each variable given each neighbours will be the same:

0.52498 0.68997 0.68997 0.26894
0.47502 0.31003 0.31003 0.73106

(12)

From the conditional probabilities, the probabilities P (xi, xj) that the Markov chain changes
from configuration xi to xj in a single step can be computed. These probabilities are represented
in the transition matrix whose elements i, j correspond to P (xi, xj). Equation 13 represents the
transition matrix corresponding to the probability distribution shown in Equation 11.

20

Tm =

0.52498 0.15834 0.15834 0 0.15834 0 0
0.17499 0.61832 0 0.10334 0 0.10334 0 0
0.17499 0 0.61832 0.10334 0 0 0.10334 0

0 0.22999 0.22999 0.29633 0 0 0 0.24369
0.17499 0 0 0 0.61832 0.10334 0.10334 0

0 0.22999 0 0 0.22999 0.29633 0 0.24369
0 0 0.22999 0 0.22999 0 0.29633 0.24369
0 0 0 0.089647 0 0.089647 0.089647 0.73106

(13)
By inspecting the matrix it is possible to determine which configurations can be reached in

a single step from each other configuration. For instance, starting from configuration (0, 0, 0) it
is not possible to reach any other configuration with more than one component equal 1. The
transition matrix P will determine a number of important properties of the Markov chain. In
particular, the vector probabilities for every state at step t (πt(x)) can be computed as:

πt(x) = π0(x)P
t (14)

where π0(x) represents the initial probabilities for all the states.
The transition matrix will determine whether the Markov chain is irreducible (all states com-

municate with each other after a finite number of states), aperiodic (the number of steps needed
to move between two different configurations is not required to be multiple of an integer) and
whether it will converge to a unique stationary distribution.

Figure 14 shows the evolution of the probabilities at each step of the Markov chain with
transition probabilities represented by Equation 13 and started from a uniform probability π0(x).
At each step, the probabilities have been computed using Equation 14.

It can be seen in Figure 14 that after a few number of steps the Markov chain converges
to the target distribution. Also interesting is to appreciate that at the initial steps the initial
probabilities can be far from the final ones.

When inserted within EDAs, the behaviour of the Gibbs sampling will depend on the initial
probabilities (whether they are uniform, or conveniently chosen), the transition matrix, which
depends as well on the structure of the neighbourhood and the probabilities learned from the
data) and on the number of steps allowed to Gibbs sampling.

7 Conclusion

In this paper, we have proposed MOA, a local Markov property based EDA, as a promising
member of the Markov network based EDA. The proposed algorithm has simpler workflow and
is easier to implement than other global Markov property based EDAs. It incorporates features
that have been independently employed in previous implementations of EDAs based on Markov
models, but have not been used together. The resulting algorithm is qualitatively different to its
predecessors. It does structural learning of the probabilistic model from the data but it can also
take advantage of a priori structural information in a straightforward way.

Following are the key contributions of this paper.

21

0 10 20 30 40 50 60
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Probabilities

G
ib

bs
 s

am
pl

in
g

ite
ra

tio
ns

p
000

p
001

p
011

p
111

Figure 14: Configuration probabilities at different steps of the Markov chain started from a
uniform probability distribution.

• Use of local conditional probability distribution in a Markov network EDA as an alter-
native to the joint probability distribution. This avoids complex approximation involving
cliques and the corresponding potential functions, resulting in simpler and easy to implement
Markov network based EDA.

• Use of Gibbs sampler as a method to sample from the undirected structure. This allows
explicit control over the convergence of the probability distribution and also allows MOA to
balance the exploration and exploitation of the search space.

As stated earlier, it is important to distinguish the difference between MOA and its other
Markov network based counterparts, DEUM and MN-EDA. In particular, DEUM defines clique
potential functions to encapsulate interaction between variable and builds a model of fitness
function to approximate the joint probability distribution of a Markov network. Similarly, MN-
EDA also estimates joint probability distribution by means of Kikuchi approximation. In contrast,
MOA estimates conditional probabilities defined by the neighbourhood structure of the Markov
network and does not estimate joint probability distribution. These conditional probabilities are
then sampled using Gibbs sampler. The paper also shows both empirically and theoretically, the
effect of the Gibbs sampler has on the workflow of the algorithm.

Interaction between variables in many real world problems can be naturally represented as an
undirected graph. Well known examples of such problems include Ising spin glasses and SAT.
Structure of such problems can be readily incorporated in MOA without requiring to have a
structure learning step. This is an important property of MOA that distinguishes it from other
Bayesian network based EDAs. We also notice that, the workflow of MOA is comparatively more

22

similar to that of BN based EDAs than other global Markov network based EDAs, since it also
estimates conditional probabilities for each variables by means of frequency counting.

A range of experiment was conducted in order to test the different aspects of MOA per-
formance, which confirmed that MOA can effectively solve problems with complex interaction
between variables. The results also showed that its performance is comparable to that of other
Bayesian network based EDAs.

Further research should be done in order to improve the performance of MOA, particularly, on
the implementation of a more efficient structure learning algorithm, and also on the use of other
more efficient versions of the Gibbs sampler algorithm. These works are underway and interesting
results are expected in near future.

References

[1] S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial optimization:
Learning the structure of the search space. In Proceedings of the 14th International Confer-
ence on Machine Learning, pages 30–38. Morgan Kaufmann.

[2] J. Besag. Spatial interactions and the statistical analysis of lattice systems (with discussions).
Journal of the Royal Statistical Society, 36:192–236, 1974.

[3] C. Echegoyen, J. A. Lozano, R. Santana, and P. Larrañaga. Exact Bayesian network learning
in estimation of distribution algorithms. In Proceedings of the 2007 Congress on Evolutionary
Computation CEC-2007, pages 1051–1058. IEEE Press, 2007.

[4] R. Etxeberria and P. Larrañaga. Global optimization using Bayesian networks. In A. Ochoa,
M. R. Soto, and R. Santana, editors, Proceedings of the Second Symposium on Artificial
Intelligence (CIMAF-99), pages 151–173, Havana, Cuba, 1999.

[5] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restora-
tion of images. In M. A. Fischler and O. Firschein, editors, Readings in Computer Vision:
Issues, Problems, Principles, and Paradigms, pages 564–584. Kaufmann, Los Altos, CA.,
1987.

[6] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, 1989.

[7] J. M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished,
1971.

[8] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling.
In J. F. Lemmer and L. N. Kanal, editors, Uncertainty in Artificial Intelligence 2, pages
149–163. North-Holland, Amsterdam, 1988.

[9] M. I. Jordan, editor. Learning in Graphical Models. NATO Science Series. Kluwer Academic
Publishers, Dordrecht, 1998.

[10] R. Kikuchi. A Theory of Cooperative Phenomena. Physical Review, 81:988–1003, Mar. 1951.

23

[11] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Combinatorial optimization by
learning and simulation of Bayesian networks. In Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence, pages 343–352, 2000. Stanford.

[12] P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Kluwer Academic Publishers, 2002.

[13] S. L. Lauritzen. Graphical Models. Oxford University Press, 1996.

[14] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society
B, 50:157–224, 1988.

[15] S. Z. Li. Markov Random Field modeling in computer vision. Springer-Verlag, 1995.

[16] N. Metropolis. Equations of state calculations by fast computational machine. Journal of
Chemical Physics, 21:1087–1091, 1953.

[17] H. Mühlenbein and T. Mahnig. FDA - A scalable evolutionary algorithm for the optimization
of additively decomposed functions. Evolutionary Computation, 7(4):353–376, 1999.

[18] H. Mühlenbein, T. Mahnig, and A. R. Ochoa. Schemata, distributions and graphical models
in evolutionary optimization. Journal of Heuristics, 5(2):215–247, 1999.

[19] H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distributions:
I. binary parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors,
Parallel Problem Solving from Nature – PPSN IV, pages 178–187, Berlin, 1996. Springer.

[20] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, University of California, Berkeley, 2002.

[21] I. Murray and Z. Ghahramani. Bayesian Learning in Undirected Graphical Models: Approx-
imate MCMC algorithms. In Twentieth Conference on Uncertainty in Artificial Intelligence
(UAI 2004), Banff, Canada, 8-11 July 2004.

[22] A. Ochoa, M. R. Soto, R. Santana, J. Madera, and N. Jorge. The factorized distribution
algorithm and the junction tree: A learning perspective. In A. Ochoa, M. R. Soto, and
R. Santana, editors, Proceedings of the Second Symposium on Artificial Intelligence (CIMAF-
99), pages 368–377, Havana, Cuba, March 1999.

[23] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman Publishers, Palo
Alto, CA, 1988.

[24] M. Pelikan. Bayesian optimization algorithm: From single level to hierarchy. PhD thesis,
University of Illinois at Urbana-Champaign, Urbana, IL, 2002. Also IlliGAL Report No.
2002023.

[25] M. Pelikan and D. E. Goldberg. Hierarchical problem solving by the Bayesian optimization
algorithm. IlliGAL Report No. 2000002, Illinois Genetic Algorithms Laboratory, University
of Illinois at Urbana-Champaign, Urbana, IL, 2000.

24

[26] M. Pelikan and D. E. Goldberg. Hierarchical BOA solves Ising spin glasses and MAXSAT.
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003), pages
1271–1282, 2003. Also IlliGAL Report No. 2003001.

[27] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian Optimization Algorithm.
In W. Banzhaf et al., editor, Proceedings of the Genetic and Evolutionary Computation Con-
ference GECCO99, volume I, pages 525–532, San Fransisco, CA, 1999. Morgan Kaufmann
Publishers.

[28] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of optimization by building and using
probabilistic models. Computational Optimization and Applications, 21(1):5–20, 2002.

[29] M. Pelikan, K. Sastry, M. V. Butz, and D. E. Goldberg. Hierarchical BOA on random decom-
posable problems. IlliGAL Report No. 2006002, University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory, Urbana, IL, January 2006.

[30] R. Santana. A Markov network based factorized distribution algorithm for optimization. In
Proceedings of the 14th European Conference on Machine Learning (ECML-PKDD 2003),
volume 2837, pages 337–348, Dubrovnik, Croatia, 2003. Springer-Verlag.

[31] R. Santana. Estimation of Distribution Algorithms with Kikuchi Approximation. Evolution-
ary Computation, 13:67–98, 2005.

[32] R. Santana, P. Larrañaga, and J. A. Lozano. Mixtures of Kikuchi approximations. In
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, Proceedings of the 17th European
Conference on Machine Learning: ECML 2006, volume 4212 of Lecture Notes in Artificial
Intelligence, pages 365–376, 2006.

[33] S. Shakya. DEUM: A Framework for an Estimation of Distribution Algorithm based on
Markov Random Fields. PhD thesis, The Robert Gordon University, Aberdeen, UK, April
2006.

[34] S. Shakya and J. McCall. Optimisation by Estimation of Distribution with DEUM framework
based on Markov Random Fields. International Journal of Automation and Computing,
4:262–272, 2007.

[35] S. Shakya, J. McCall, and D. Brown. Updating the probability vector using MRF technique
for a univariate EDA. In E. Onaindia and S. Staab, editors, Proceedings of the Second
Starting AI Researchers’ Symposium, volume 109 of Frontiers in Artificial Intelligence and
Applications, pages 15–25, Valencia, Spain, August 2004. IOS press.

[36] S. Shakya, J. McCall, and D. Brown. Using a Markov Network Model in a Univariate EDA: An
Emperical Cost-Benefit Analysis. In proceedings of Genetic and Evolutionary Computation
COnference (GECCO2005), pages 727–734, Washington, D.C., USA, 2005. ACM.

[37] S. Shakya, J. McCall, and D. Brown. Solving the Ising spin glass problem using a bivariate
EDA based on Markov Random Fields. In proceedings of IEEE Congress on Evolutionary
Computation (IEEE CEC 2006), pages 3250–3257, Vancouver, Canada, 2006. IEEE press.

25

[38] S. Shakya and R. Santana. An EDA based on local Markov property and Gibbs sampling. In
proceedings of Genetic and Evolutionary Computation COnference (GECCO2008), Atlanta,
Georgia, USA, 2008. ACM.

26

