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ABSTRACT
This paper presents a methodology for using heuristic search
methods to optimise cancer chemotherapy. Specifically, two
evolutionary algorithms - Population Based Incremental Learn-
ing (PBIL), which is an Estimation of Distribution Algo-
rithm (EDA), and Genetic Algorithms (GAs) have been ap-
plied to the problem of finding effective chemotherapeutic
treatments. To our knowledge, EDAs have been applied to
fewer real world problems compared to GAs, and the aim
of the present paper is to expand the application domain of
this technique.

We compare and analyse the performance of both algo-
rithms and draw a conclusion as to which approach to can-
cer chemotherapy optimisation is more efficient and helpful
in the decision-making activity led by the oncologists.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

; G.3 [Probability and statistics]: Probabilistic algo-
rithms, Stochastic processes

; J.3 [Life and Medical Sciences]: Health

General Terms
Algorithms, Performance, Theory

Keywords
Estimation of Distribution Algorithms, Evolutionary Com-
putation, Probabilistic Modelling

1. INTRODUCTION
Many decision-making activities involve searching through

a large space of possible solutions. In the chemotherapy
problem we have studied [17], [19], [20], the size of the so-
lution space increases exponentially with the number of de-
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cision variables, the values of which need to satisfy certain
feasibility criteria.

The requirements imposed on decision variables often make
the structure of a solution space quite intricate - regions of
feasible solutions are scattered irregularly throughout the
solution space, and only one of these regions contains the
optimal solution. To find the optimal solution in such sit-
uations becomes a difficult task for conventional optimisa-
tion methods (gradient-based or simple heuristics). Sim-
ilarly, the methods of mathematical programming cannot
easily deal with multiplicity of feasible regions in the solu-
tion space or complementary constraints. Although a num-
ber of advances have been made in the area of solving non-
linear optimisation problems using numerical methods [6],
they cannot guarantee finding a feasible solution - let alone
the optimal one.

It has been found [14], [19], [25], [26] that Genetic Al-
gorithms show a good and robust performance on a class
of non-linear, multi-constrained chemotherapy design prob-
lems. However, the field of evolutionary computation is
growing, and alternative techniques of computational op-
timisation are being developed. The advent of probabilistic
models for evolutionary computation has led to the devel-
opment of more efficient algorithms that are able to resolve
some of the limitations exhibited by conventional Genetic
Algorithms [8]. One such technique that uses probabilistic
models is the Estimation of Distribution Algorithm (EDA)
[15], which replaces the traditional crossover and mutation
operators used by GAs with the estimation and sampling
from probabilistic models of each generation [21]. In EDAs,
the important patterns or building blocks are identified from
the population of promising solutions. A model of the prob-
ability distribution is used to preserve those patterns and is
explicitly sampled to generate a better population. EDAs
are reported to solve problems that are known to be GA-
hard [16].

Various implementations of EDAs have been proposed in
the literature. They can be categorised into three groups:
a) univariate b) bivariate and c) multivariate (see [12] for
more information). For the purpose of this paper, we will
concentrate on an algorithm called Population Based Incre-
mental Learning (PBIL), proposed by Baluja et al. [2], [3].
PBIL is a univariate EDA that uses binary representation
of the chromosome. Other univariate EDA include Univari-
ate Marginal Distribution Algorithm (UMDA)[15] , compact
Genetic Algorithm (cGA) [9], and a recently proposed EDA
called Distribution Estimation using Markov Random Fields
(DEUM) [24, 23]. Amongst other EDAs, PBIL is one of the



most frequently-occurring algorithm used for solving real life
optimisation problems [7, 11].

Although studied extensively in theory, only a few real-
world applications of EDAs have been reported [1, 22]. The
purpose of this paper is to ascertain the applicability of the
PBIL to the problem of finding effective chemotherapeutic
treatments and to compare its performance with that of the
known method, in particular with that of GAs.

The paper is structured as follows. Section 2 introduces
the problem of cancer chemotherapy. Section 3 describes
the methodology of solving this problem by transforming a
chemotherapeutic treatment into a GA/PBIL chromosome.
Section 4 presents the experimental results; the final Section
5 discusses the results and concludes the paper.

2. OPTIMIZATION PROBLEM OF CANCER
CHEMOTHERAPY

Amongst the modalities of cancer treatment, chemother-
apy is often considered as inherently the most complex [27].
As a consequence of this, it is extremely difficult to find
effective chemotherapy treatments without a systematic ap-
proach. In order to realise such an approach, we need to
take into account the medical aspects of cancer treatment.

2.1 Medical aspects of Chemotherapy
Drugs used in cancer chemotherapy all have narrow ther-

apeutic indices. This means that the dose levels at which
these drugs significantly affect a tumour are close to those
levels at which unacceptable toxic side-effects occur. There-
fore, more effective treatments result from balancing the
beneficial and adverse effects of a combination of different
drugs, administered at various dosages over a treatment pe-
riod [19].

The beneficial effects of cancer chemotherapy correspond
to treatment objectives which oncologists want to achieve by
means of administering anti-cancer drugs. A cancer chemother-
apy treatment may be either curative or palliative. Cura-
tive treatments attempt to eradicate the tumour; palliative
treatments, on the other hand, are applied only when a tu-
mour is deemed to be incurable with the objective to main-
tain a reasonable quality of life for as long as possible.

The adverse effects of cancer chemotherapy stem from the
systemic nature of this treatment: drugs are delivered via
the bloodstream and therefore affect all body tissues. Since
most anti-cancer drugs are highly toxic, they inevitably cause
damage to sensitive tissues elsewhere in the body. In order
to limit this damage, toxicity constraints need to be placed
on the amount of drug applied at any time interval, on the
cumulative drug dosage over the treatment period, and on
the damage caused to various sensitive tissues [27]. In addi-
tion to toxicity constraints, the tumour size (i.e. the number
of cancerous cells) must be maintained below a lethal level
during the whole treatment period for obvious reasons.

The goal of cancer chemotherapy therefore is to achieve
the beneficial effects of treatment objectives without violat-
ing any of the above mentioned constraints.

2.2 Problem formulation
In order to solve the optimisation problem of cancer chemother-

apy, we need to find a set of treatment schedules, which
satisfies toxicity and tumour size constraints yielding at the
same time acceptable values of treatment objectives. This

set will allow the oncologist to make a decision on which
treatment schedule to use, given his/her preferences or cer-
tain priorities. In the remainder of this section we will de-
fine the decision vectors and the search space for the cancer
chemotherapy optimisation problem, specify the constraints,
and particularise the optimisation objectives.

Anti-cancer drugs are usually delivered according to a dis-
crete dosage program in which there are s doses given at
times t1, t2, ..., ts [13]. In the case of multi-drug chemother-
apy, each dose is a cocktail of d drugs characterised by
the concentration levels Cij , i ∈ 1, s, j ∈ 1, d of anti-cancer
drugs in the bloodplasma. Optimisation of chemotherapeu-
tic treatment is achieved by modification of these variables.
Therefore, the solution space Ω of the chemotherapy op-
timisation problem is the set of control vectors c = (Cij)
representing the drug concentration profiles.

However, not all of these profiles will be feasible as chem-
otherapy treatment must be constrained in a number of
ways. Although the constraint sets of chemotherapeutic
treatment vary from drug to drug as well as with cancer
type, they have the following general form.

1. Maximum instantaneous dose Cmax for each drug act-
ing as a single agent:

g1(c) =

(
Cmaxj − Cij ≥ 0

... ∀i ∈ 1, s, ∀j ∈ 1, d

)
(1)

2. Maximum cumulative Ccum dose for drug acting as a
single agent:

g2(c) =

(
Ccumj −

sX
i=1

Cij ≥ 0
... ∀j ∈ 1, d

)
(2)

3. Maximum permissible size of the tumour:

g3(c) =

(
Nmax − N(ti) ≥ 0

... ∀i ∈ 1, s

)
(3)

4. Restriction on the toxic side-effects of multi-drug chem-
otherapy:

g4(c) =

(
Cs−effk −

dX
j=1

ηkjCij ≥ 0
... ∀i ∈ 1, s, ∀k ∈ 1, m

)
(4)

The factors ηkj in the last constraint represent the risk of
damaging the kth organ or tissue (such as heart, bone mar-
row, lung etc.) by administering the jth drug. Estimates
of these factors for the drugs most commonly used in treat-
ment of breast cancer, as well as the values of maximum
instantaneous and cumulative doses, can be found in [4], [5].

Regarding the objectives of cancer chemotherapy, we fo-
cus our study on the primary objective of cancer treatment
- tumour eradication. We define eradication to mean a re-
duction of the tumour from an initial size of around 109 cells
(minimum detectable tumour size) to below 103 cells.

In order to simulate the response of a tumour to chemother-
apy, a number of mathematical models can be used [13]. The
most popular is the Gompertz growth model with a linear
cell-loss effect [27]:

dN

dt
= N(t) ·

�
λln

�
Θ

N(t)

�
−



dX
j=1

Kj

sX
i=1

Cij {H(t − ti) − H(t − ti+1)}

#
(5)

where N(t) represents the number of tumour cells at time
t; λ, Θ are the parameters of tumour growth, H(t) is the
Heaviside step function; kj are the quantities representing
the efficacy of anti-cancer drugs, and Cij denote the con-
centration levels of these drugs. One advantage of the Gom-
pertz model from the computational optimisation point of
view is that the equation (5) yields an analytical solution
after the substitution u(t) = ln(Θ/N(t)) [13]. Since u(t) in-
creases when N(t) decreases, the primary optimisation ob-
jective of tumour eradication can be formulated as follows
[17]:

minimise
c F (c) =

sX
i=1

N(ti) (6)

subject to the state equation (5) and the constraints (1)-
(4).

3. METHODOLOGY
In this section we are going to explain how the optimisa-

tion problem of cancer chemotherapy can be addressed by
applying GA and PBIL. In order to make the comparison
fair, the binary representation of solutions for both algo-
rithms was used. It has been reported that integer encoding
of GA solutions can improve the algorithm’s performance
[18], but for the purpose of the present study we have im-
plemented Genetic Algorithms using binary representation
to make the analysis of comparative results valid.

3.1 Binary string representation of the prob-
lem

Multi-drug chemotherapy schedules, represented by de-
cision vectors c = (Cij), i ∈ 1, s, j ∈ 1, d, are encoded as
binary strings known as chromosomes. The representation
space I (a discretized version of Ω ) can then be expressed
as a Cartesian product

I = A1
1×A2

1×...×Ad
1×A1

2×A2
2×...×Ad

2×...×A1
s×A2

s×...×Ad
s

of allele sets Aj
i . Each allele set uses a 4-bit representation

scheme

Aj
i =

(
x1x2x3x4

... xk ∈ {0, 1}∀k ∈ 1, 4

)
so that each concentration level Cij takes an integer value

in the range of 0 to 15 concentration units [19]. In gen-
eral, with s treatment intervals and up to 2p concentration
levels for d drugs, there are up to 2spd individual elements.
Henceforth we assume that s = 10 and that the number of
available drugs in restricted to ten [17]. These drugs are de-
livered sequentially - one after another - to form a multi-drug
dose, which is administered periodically over the treatment
period that consists of up to s cycles. The values s = 10
and d = 10 result in the individual (search) space of power
|I| = 2400 individuals, referred to as chromosomes.

Thus, a chromosome x ∈ I can be expressed as

x =

(
x1x2x3...x4sd

... xk ∈ {0, 1}∀k ∈ 1, 4sd

)
and the mapping function m : I → C between the individual
I and the decision vector C spaces can be defined as

Cij = ∆Cj

4X
k=1

24−kx4d(i−1)+4(j−1)+k, ∀i ∈ 1, s, j ∈ 1, d

where ∆Cj represents the concentration unit for drug j .
This function symbolizes the decoding algorithm to derive a
decision vector from a chromosome x . Applying the evalu-
ation function F to c yields the value of the fitness function
for both algorithms.

F (c) =

nX
p=1

dX
j=1

κj

pX
i=1

Cije
λ(ti−1−tp) −

4X
s=1

Psds (7)

where ds are the distance measures specifying how seriously
the constrains (1)-(4) are violated, and Ps are the corre-
sponding penalty coefficients. If all constraints are satisfied
(i.e. a treatment regimen is feasible), then the second term
in (7) will be zero, significantly increasing the value of the
fitness function.

3.2 Genetic Algorithms
A general GA starts by randomly generating M num-

ber of chromosomes to form a population P (also known
as parent population). As stated above, each chromosome
x = {x1, x2, ..., xn}, where n = 4sd, is a binary string repre-
senting a chemotherapy schedule. N chromosomes are then
selected from P according to the quality/fitness of those
chromosomes. Various selection mechanisms can be applied
for this purpose. In our case we use fitness proportionate
selection [8].

Other GA parameters have been chosen on the basis of
the previous work, presented in [18], aimed at tuning the
GA factors in order to improve the algorithm’s performance.

3.3 Population Based Incremental Learning
Similarly to a binary GA, PBIL solutions are also bit-

string chromosomes. So, in our case, a chromosome x =
{x1, x2, . . . , xn} represents a candidate chemotherapeutic tr-
eatment, where n = 4sd is the chromosome length, and each
xi is either 0 or 1.

PBIL starts by initializing a probability vector p = {p1, p2,
. . . , pn} where, each pi = 0.5. Each pi represents, the proba-
bility of 1 being presented in ith position of a chromosome. p
is then sampled M times to create a population P of chromo-
somes. N chromosomes are then selected from P according
to the quality/fitness of that chromosome. As with GA, a
number of selection mechanisms can be applied for this pur-
pose. In our case we use truncation selection [12] which is to
select the best N solutions from P . After selection, the mar-
ginal probability ρi for each ith allele position is calculated
from the selected N solutions. (ρi can be simply calculated
by dividing the frequency of 1 in ith position of allele in
selected set by N). ρi is then used to update the probabil-
ity vector p (see workflow of PBIL for more detail). This
updated probability vector replaces the initial probability
vector. This process continues until termination criteria are
satisfied.



Workflow of PBIL is shown below:

1. Initialise a probability vector p = {p1, p2, ...., pn} where,
each pi = 0.5
2. Sample p to generate an initial population, P , of size M .
3. Select the N fittest solutions from P , where N ≤ M .
4. For each allele xi, calculate the marginal probability ρi

from selected N solutions.
5. Update p using following updating rule:

for i = 1 to n do

pi = pi ∗ (1 − λ) + ρi ∗ λ

where, 0 ≤ λ ≤ 1. λ is known as learning rate parameter [2]
chosen by the user.
6. Go to Step 2 until the termination criterion is satisfied.

4. EXPERIMENTAL RESULTS
We compare the performance of GA and PBIL on the

problem of multi-drug cancer chemotherapy optimization
addressed in [14], [19]. Two different measures were adopted
to evaluate the performance of each algorithm:

1. Effeicency / Speed: The efficiency of an algorithm
can be measured in terms of computational time it takes
to find a solution. In the case of evolutionary algorithms,
the calculation of the fitness of a particular chromosome (fit-
ness evaluation) is the most computationally expensive task.
Therefore, we measure the efficiency in terms of number of
fitness evaluations taken by the algorithm to find a solution.
In our case, finding a solution means to find at least one
feasible solution (i.e. satisfying all the constraints (1)-(4)).

2. The quality of solution: A solution’s quality in our
case is the value of the fitness function (7) that indicates
how successful a particular chemotherapy schedule is in re-
ducing the overall tumour burden. Therefore, the quality
of solution is measured in terms of the best fitness, i.e the
best chromosome (best schedule that minimises the tumour
burden) found by the algorithms.

4.1 Efficiency comparison
In the efficiency comparison experiment, each algorithm

was run 1000 times and for each run the number of fitness
evaluations taken to find at least one feasible solution (i.e.
satisfying all the constraints (1)-(4)) was recorded. Run
Length Distribution (RLD)[10] curves were plotted to mea-
sure the performance (Figure 1). RLD shows, for each al-
gorithm, the cumulative percentage of successful runs that
terminated within a certain number of function evaluations.

The parameters for each of the algorithms were chosen
either on the basis of the previous work [18] (for Genetic
Algorithms) or empirically (for PBIL), taking into consider-
ation the fairness of the comparison.

In accordance with the best GA parameter settings found
in [18] for the cancer chemotherapy problem, we used a GA
population of 100 chromosomes, one-point crossover with
the probability of 0.614, uniform mutation with probability
of 0.075, and the elitism of two best chromosomes. The
algorithm terminates when it finds a feasible solution.

Similarly, PBIL population consisted of 100 chromosomes,
the selection size N was 20, and the learning rate λ was 0.3.

Figure 1 shows that the performance of PBIL was better
than the performance of GA. We can see that, for PBIL 90%
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Figure 1: Experimental results in the form of RLD
showing, for each algorithm running on chemother-
apy optimization problem, the cumulative percent-
age of successful runs that terminated within a cer-
tain number of function evaluations.

of the runs found feasible solutions within 6,700 function
evaluation in comparison with 32,900 function evaluations
for GA 1. Also, the steepness of the RLD curve for PBIL
shows that this algorithm is very reliable and finds solutions
within a predictable number of function evaluations. At the
same time, the gradual slope of the RLD curve for Genetic
Algorithms shows that the number of GA fitness evaluations
required to find a feasible solution varies for almost every
individual run and cannot be predicted accurately.

Table 1: Mean and stdev of the number of fitness
evaluations

mean stdev

GA 16208.10 12045.81
PBIL 5953.45 522.40

The mean value and the standard deviation of the number
of function evaluations taken by the algorithms over 1000
runs is presented in the Table 1. These results are analyzed
by applying a one-tailed t-test that yields the p-value of
<< 0.05 (Table 2), indicating statistical significance of the
difference in speed for PBIL and GA.

Table 2: T-test analysis of PBIL and GA mean val-
ues

Diff. in means Std. error Mean t-test p-value

10254.65 381.29 26.89 < 0.0001

4.2 Comparison of Treatment Quality
The goal of the second experiment was to find the best

chemotherapeutic regimen within a specified number of func-
tion evaluations, which was set to 200,000. In order to bet-
ter achieve this goal, the population size of both GA and
PBIL was increased to 200 chromosomes. Also, to encourage

1A smaller number of function evaluations indicates the abil-
ity of an algorithm to find a feasible solution faster.



more thorough exploration of the solution space, the muta-
tion probability of GA was adjusted in accordance with the
strategies suggested in [18]. Also, the learning rate of PBIL
was decreased to 0.05.

The results of the treatment quality experiment are pre-
sented in Table 3, which shows the mean and the standard
deviation of the fitness values found by the algorithms.

Table 3: mean and stdev of fitness
mean stdev

GA 0.4520 0.0354
PBIL 0.4917 0.0005

It is evident that the PBIL solution is better than that
of GA 2. This conclusion is supported by a one-tailed t-test
applied to the fitness values found by the algorithms and
presented in Table 4.

Table 4: Significance test of results on quality of
fitness

Diff. in means Std. error Mean t-test p-value

-0.0397 0.003 15.8676 < 0.0001

The p-value in Table 4 indicates that the difference in the
best fitness values for PBIL and GA is highly significant.
This means that PBIL outperforms GA on the chemother-
apy optimisation problem not only with respect to the com-
putational speed of finding a feasible treatment, but with
respect to the quality of the found solution as well.

5. CONCLUSION
In this paper we have examined the problem of designing

efficient chemotherapeutic treatments that satisfy toxicity
and tumour size constraints. This problem has been formu-
lated in terms of exploring a vast search space of possible
treatment schedules using two computational heuristic algo-
rithms - Estimation of Distribution Algorithm (in the form
of PBIL) and Genetic Algorithm.

The heuristic algorithms proposed have been successfully
applied to the chemotherapy optimisation problem and were
able to find feasible solutions to this problem in a reasonable
computational time. Our experimental results show that
PBIL outperforms Genetic Algorithms in both the speed of
finding a feasible treatment schedule and in the quality of
the final solution.

This result can have practical implications. The better
quality of the drug schedules found by PBIL can lead to
more effective chemotherapeutic treatments. On the other
hand, the ability of PBIL to explore the solution space of
possible treatments more efficiently, enables us to provide a
more helpful decision-support tool using OWCH - the online
decision support system described in [14].

Also, a successful application of PBIL in the present con-
text opens the possibility of using multivariate EDAs for
designing chemotherapeutic treatments. Multivariate EDAs

2In this experiment we are trying to find a solution with
the largest value of the fitness function - such a solution
represents the best feasible treatment schedule, and thus
preferable.

have been shown to perform better on a wider range of op-
timization problems as they are able to capture the interac-
tions between variables in their probabilistic model. This is
particular important in the context of cancer chemotherapy
optimisation, where interactions between drugs play a vital
role in the overall success of a treatment regimen [5]. We
intend to address this issue in the future.
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