
Estimating the distribution in an EDA

S. Shakya, J. McCall, D. F. Brown
School of Computing, The Robert Gordon University, Aberdeen, UK

E-mail: {ss, jm, db}@comp.rgu.ac.uk

Abstract
This paper presents an extension to our work on es-

timating the probability distribution by using a Markov
Random Field (MRF) model in an Estimation of Distri-
bution Algorithm (EDA) [1]. We propose a method that
directly samples a MRF model to generate new popula-
tion. We also present a new EDA, called the Distribution
Estimation Using MRF with direct sampling (DEUMd),
that uses this method, and iteratively refines the probabil-
ity distribution to generate better solutions. Our experi-
ments show that the direct sampling of a MRF model as
estimation of distribution provides a significant advan-
tage over other techniques on problems where a univari-
ate EDA is typically used.

1 Introduction
Estimation of Distribution Algorithms (EDAs) [2][3],

also known as Probabilistic Model Building Genetic Al-
gorithms (PMBGAs) [4], are a well-established topic in
the field of evolutionary algorithms. EDAs are motivated
by the idea of identifying important patterns or building
blocks [4] from the population of promising solutions.
A model of the probability distribution is used to pre-
serve those patterns and is explicitly sampled to gener-
ate a child population. EDAs are classified as univariate,
bivariate or multivariate according to the type of interac-
tion between allele values that is allowed in the model of
the probability distribution (see [3][4]).

An EDA regards a solution (chromosome) as a set of
random variables (the alleles), each taking a particular
value from a set of possible values. In particular, we rep-
resent a solution as x = {x1, x2, . . . , xn} where each xi
is the value taken by the i-th random variable. Univariate
EDAs do not consider dependencies between variables,
i.e., they only model building blocks of order one. In
this case, the joint probability distribution, p(x), is sim-
ply the product of the univariate marginal probabilities
of all variables in a solution x:

p(x) =

n
∏

i=1

p(xi) (1)

Here, p(xi) is the marginal probability of the i-th vari-
able having the value xi. Population Based Incremen-

tal Learning (PBIL), the Univariate Marginal Distribu-
tion Algorithm (UMDA), and the Compact Genetic Al-
gorithm (cGA) all use a univariate model of the proba-
bility distribution (see [3][4][5]).

In our recent work [1], we propose a different model
of probability distribution for EDAs known as Markov
Random Field (MRF) model [6]. As in PBIL, the algo-
rithm proposed there, known as Distribution Estimation
Using MRFs (DEUM), maintains a probability vector,
however, uses a univariate MRF model to update it [1].

In this paper, we refine our use of MRF models for the
estimation of distribution. We describe an updated ver-
sion of DEUM called the Distribution Estimation Using
MRFs with direct sampling (DEUMd). DEUMd does not
maintain a probability vector. Instead, it directly sam-
ples the MRF model to generate new population. The
workflow of DEUMd is more similar to that of UMDA
than PBIL. In UMDA, the marginal frequencies are di-
rectly sampled to generate successive populations. In
DEUMd, we replace these marginal frequencies with a
MRF model that is also built from a selected subset of
the population. This MRF model gives a maximum like-
lihood estimation of the optimal solution based on the
selected set, and it is sampled to generate a successive
population. The result of this, as we will show, is a sig-
nificant improvement in learning on well-known univari-
ate EDA problems.

The rest of the paper is constructed as follows. Sec-
tion 2 introduces our univariate MRF model, and shows
how we determine the model from a population. Sec-
tion 3 describes the operation of DEUMd in detail, and
Section 4 gives the results of several experiments that
compare DEUMd with other univariate EDAs. Finally,
Section 5 summarises and outlines further work.

2 A univariate MRF model of fitness
In [7], MRF theory was used to provide a formulation

of the joint probability distribution that relates solution
fitness to an energy function calculated from the values
of the solution variables. To be precise:

p(x) =
f(x)

∑

y f(y)
=

e−U(x)/T

∑

y e
−U(y)/T

(2)

from which we can derive an equation for each solution
x (see [7]):

− ln(f(x)) = U(x) (3)

Here, f(x) is the fitness of an individual. U(x) is
an energy function derived from allele values and, T is
a temperature coefficient. The summations are over all
possible solutions y. U(x) gives the full specification of
the joint probability distribution, so it can be regarded as
a probabilistic model of the fitness function. In particu-
lar, minimising U(x) is equivalent to maximising f(x).
In general, the form of the energy function will involve
interactions between the variables xi. In DEUMd, how-
ever, we use a simple form that assumes no such interac-
tions. Instead each variable provides a contribution αixi
to the overall energy. From the above, we can derive an
equation for each solution:

− ln(f(x)) = α1x1 + α2x2 + . . .+ αnxn (4)

We refer to this as the univariate MRF model. The
real-valued αi are called the MRF parameters, and com-
pletely determine the probability distribution.

Each solution in a given population provides an equa-
tion satisfying the model. Selecting N promising solu-
tions from a population therefore allows us to estimate
the distribution by solving the system of equations:

AαT = F (5)

Here, A is the N×n-dimensional matrix of allele val-
ues in the selected set, α is the vector of MRF parameters
α = (α1, α2, . . . , αn), and F is the N -dimensional vec-
tor containing− ln(f(x)) of the selected set of solutions
x. Solving this system of linear equations, we get the set
of MRF parameters α. Depending on the relationship
between N and n, the system will be under-, over-, or
precisely-specified. A standard fitting algorithm can be
used to give a maximum likelihood estimation of the αi.
The αi can then be used to provide a direct estimate of
the probability of the value of xi. For mathematical rea-
sons, we use {−1, 1} as the values of xi in our model,
rather than {0, 1}. This ensures arithmetical symmetry
between the possible allele values. However, the follow-
ing analysis generalises to any choice of distinct values.

Fixing the value of a particular allele divides the set
Ω of all chromosomes into two disjoint sets, which we
denote by A and B. More precisely, A = {x ∈ Ω :
xi = 1} and B = {x ∈ Ω : xi = −1}. We denote the
probability that the allele value in position i is equal to
1 by p(xi = 1). Clearly, the probability that the allele
value in position i is equal to−1 is 1− p(xi = 1). From
(2), we obtain:

p(xi = 1) =
∑

x∈A

p(x) =
∑

x∈A

e−U(x)/T

Z
(6)

Here, Z =
∑

y e
−U(y)/T is a (very large) normalising

constant. Substituting for U(x) from (4), and noting that
xi = 1 for all x ∈ A, we obtain:

p(xi = 1) = e−αi/T
K

Z
(7)

where K is a large constant representing the sum over
all chromosomes in A of contributions from alleles in
positions other than i.

Similarly, summing over B we obtain the probability
that the allele value in position i is equal to −1:

p(xi = −1) = 1− p(xi = 1) = eαi/T
K

Z
(8)

Here, K is the same constant as in (7), because the
chromosomes in A and B agree pairwise at allele posi-
tions other than i. Combining (7) and (8), the constants
K and Z drop out, and we get the following expression
as an estimate of the marginal probability for xi = 1:

p(xi = 1) =
1

1 + eβαi
(9)

where, β = 2/T .
Note that, as T → 0, the value of β increases, and the

value of p(xi = 1) tends to an extreme depending on the
sign of αi. If αi > 0, then p(xi = 1) → 0 as T → 0.
Conversely, if αi < 0, then p(xi = 1)→ 1 as T → 0. If
αi = 0, then p(xi = 1) = 0.5 regardless of the value of
T . Therefore, the αi are indicators of whether the allele
value at the position i should be 1 or−1. This indication
becomes stronger as the temperature is cooled towards
zero.

This forms the basis for our estimation of distribution
technique, which combines the univariate MRF model
with a cooling scheme. We reduce T , i.e., increase β,
as the population evolves, so the model becomes more
exploitative rather than explorative as the evolution pro-
gresses.

3 DEUMd: Distribution Estimation Using MRFs
with direct sampling

The five step procedure of the algorithm for DEUMd

are as follows:
1. Generate an initial population, P , of size M with uni-
form distribution.
2. Select the N fittest solutions from P , where N ≤M .
3. Calculate the MRF parameters α = (α1, α2, . . . , αn)
by applying the univariate MRF model to the selected
solutions and solving the system of linear equations.
4. Generate M new solutions using the following distri-
bution:

p(x) =
n
∏

i=1

p(xi)

where, p(xi = 1) = 1
1+eβαi

and p(xi = −1) =
1

1+e−βαi
. Here, β is defined as β = gτ where, g is the

number of the current iteration and τ > 0 is a cooling
rate parameter chosen by the user.
5. Replace P by the new population, and go to Step 2
until the termination criterion is satisfied.

DEUMd uses the singular value decomposition (SVD)
[8] technique to solve the system of linear equations.
SVD proves to be the most stable technique, and can
solve (in the sense of giving a useful numerical answer)
systems of linear equations that are either under- or over-
specified [8].

As described in Section 2, β has a direct effect on the
convergence speed of DEUMd. As the number of iter-
ations (g) grows, the marginal probability (p(xi)) grad-
ually cools down to either 0 or 1. However, depending
upon the type of problem, different cooling rate may be
required. In particular, there is a trade-off between con-
vergence speed of the algorithm and the exploration of
the search space. Therefore, the cooling rate parameter,
τ , has been introduced. τ gives the user explicit control
over the convergence speed of DEUMd. Decreasing τ
slows the cooling, resulting in better exploration of the
search space. However, it also slows the convergence of
the algorithm. Increasing τ , on the other hand, makes
the algorithm converge faster. However, the exploration
of the search space will be reduced.

4 Experiments
In this section, we compare DEUMd with other uni-

variate EDAs including DEUM and a GA, on two dif-
ferent problems. In order to compare best with best,
we empirically determined the parameters for DEUMd.
For the rest of the algorithms, we used parameter set-
tings from the literature or empirically determined pa-
rameters, depending on which proved best for particular
problems. The performance of each algorithm was mea-
sured in terms of the number of fitness evaluation taken
to find the optimal solution.

4.1 Onemax Problem

The Onemax problem [2] is a simple linear problem
decomposable into building blocks of order one, and
therefore is an ideal problem for univariate EDAs. It has
been shown that UMDA works very well on this problem
[2]. We compare the performance of DEUMd against
a simple GA with uniform crossover (GA (uniform)),
UMDA, and DEUM. 100 runs of each algorithm were
executed for a series of Onemax problems with chromo-
somes ranging in size between 30 and 180. The number
of fitness evaluations taken to find the optimal solution

was recorded for each run. Uniform crossover with ex-
change probability of 0.5 was used for GA (uniform),
crossover was applied all the time and mutation was not
applied. Population size M ranged from 40 to 100 for
GA (uniform), 50 to 170 UMDA, 1.5n for DEUM and
was fixed at 40 for DEUMd. λ for DEUM was from 0.5
to 0.6 and τ for DEUMd was from 5 to 4.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180

N
um

be
r o

f f
itn

es
s

ev
al

ua
tio

ns

Problem Size

GA(uniform)
UMDA
DEUM

DEUMd

Fig. 1. Average number of fitness evaluations for 30 to 180
sized onemax problem where the population size was
40 to 100 for GA (uniform), 50 to 170 for UMDA, 1.5n

for DEUM and 40 for DEUMd.

Truncation selection was used where selection size N
was 0.5M for GA (uniform), 0.3M for UMDA, 0.85M
for DEUM and a fixed size of 10 was used for DEUMd.
No elitism was used and new populations were generated
with complete replacement. Fig. 1 shows the average
number of fitness evaluations for each algorithm over the
range of onemax problems.

The success ratio of converging to the optimum was
93.5% for DEUM, 96% for DEUMd, 98% for UMDA
and 100% for GA (uniform). As we can see from Fig. 1,
UMDA has an expected performance, better than that of
GA (uniform) [2]. However, DEUMd performs better
than all of the other algorithms, for all problem instances
independent of their size.

4.2 Schaffer f6 function optimization

The Schaffer f6 function, described in [9] has been
frequently used to evaluate the performance of GAs. An
interesting feature of this function is that it has many lo-
cal optima, but a single global optimal solution. So a
hill-climbing algorithm will rapidly become trapped in
one of the local optima. A simplified version of it is pre-
sented below:

f(x) = 1 +

(

cos(x)

1 + 0.001x2

)

where −300 ≤ x ≥ 300.
The optimal solution is f(x) = 2 when x = 0. We

performed experiments with a 20-bit Gray code repre-
sentation of the f6 function.

Each algorithm with fixed parameter settings was run
for total of 1000 runs. For each run the number of eval-
uations taken to find the optimum was recorded. For
GA(uniform), the population size was 300, and trunca-
tion selection with a selection size N = 0.5M was used.
Crossover was applied all the time, mutation was set to
0.01 and 50% elitism was used. For PBIL, DEUM and
DEUMd, the population size was 500 and the selection
size, N was 2. The learning rate, λ, for both PBIL and
DEUM was 0.1 and the cooling rate, τ , for DEUMd was
1.5. Mutation shift was not applied in PBIL.

The experimental results are shown in Fig. 2, where
the Run Length Distribution (RLD) [10] is plotted for
each of the compared algorithms. We can see that, with
DEUMd, 80% of runs found the optimum within 4500
function evaluations, compared with 9000 function eval-
uations for PBIL. The success rate for finding a solution
for DEUMd was 92% compared to 94% of DEUM, how-
ever the number of function evaluations needed to find
the solution for DEUMd was significantly less than that
of other algorithms.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

cu
m

ul
at

iv
e

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

fu
l r

un
s

Number of fitness evaluations (log scale)

GA(uniform)
PBIL

DEUM
DEUMd

Fig. 2. Experimental results in the form of RLD showing, for
each algorithm running on 20-bit Schaffer f6 function,
the cumulative percentage of successful runs that ter-
minated within a certain number of function evalua-
tions.

5 Conclusions
In this paper, we have presented DEUMd as a novel

EDA, which uses MRF modelling of fitness to esti-
mate the probability distribution. The motivation behind
DEUMd is to use a direct sampling of a MRF model to
generate a new population in order to improve evolution.

Our experiments shows that, for univariate problems, the
use of MRF parameters instead of marginal probabili-
ties does provide a better estimation of the distribution.
This leads to better performance in terms of the number
of function evaluations required for convergence to the
global optimum. There are some penalties though. Cal-
culating the MRF parameters is computationally more
expensive than calculating marginal distributions, and
so DEUMd will be particularly appropriate for problems
where there is a positive trade-off in reducing the number
of fitness evaluations.

A promising line of research in this area is to develop
MRF models for bivariate and multivariate EDAs, where
the extra computational costs are more likely to be com-
pensated by a reduction in the number of fitness evalua-
tions required to solve higher-order problems.

6 References
[1] Shakya, S., McCall, J., Brown D. (2004). Up-

dating the probability vector using MRF technique for a
Univariate EDA . In proceedings of STAIRS 2004, IOS
press, pp. 15–25.

[2] Mühlenbein, H., Paass, G. (1996). From recombi-
nation of genes to the estimation of distributions I. Bi-
nary parameters. Voigt, H.-M et. El.(eds.) PPSN IV,
LNCS 1141, Springer, pp. 178–187.

[3] Larran̈aga P., and Lozano J. A. (2001) Estimation
of Distribution Algorithms: A New Tool for Evolution-
ary Computation. Kluwer Academic Publishers, 2001.

[4] Pelikan, M., (2002). Bayesian optimization algo-
rithm: From single level to hierarchy. Ph.D. thesis, Uni-
versity of Illinois at Urbana -Champaign, Urbana, IL.

[5] Baluja, S. (1994). Population based incremental
learning: A method for integrating genetic search based
function optimization and competitive learning. Techni-
cal Report CMUCS94163, Pittsburgh, PA.

[6] Li, S. Z. (1995). Markov random field model-
ing in computer vision. ISBN:4-431-70145-1, Springer-
Verlag,1995.

[7] Brown D.F., Garmendia-Doval, A.B., McCall,
J.A.W. (2001). Markov Random Field Modelling of
Royal Road Genetic Algorithms. Evolution Artificielle
2001, LNCS 2310, pp. 65–78, Springer Verlag 2002.

[8] Press, W. H., Teukolsky, S. A., Vetterling, W. T.,
and Flannery, B. P (1993). Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University
Press, 2nd edition, 1993

[9] Lawrence Davis (1991), editor. Handbook of Ge-
netic Algorithms. Van Nostrand Reinhold, 1991.

[10] Hoos, H. H. and Stutzle, T. (1999). Towards
a characterisation of the behaviour of stochastic local
search algorithms for SAT. Artificial Intelligence, 112(1-
2):213.232, 1999.

